典型文献
Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature
文献摘要:
Let(X,d,μ)be a metric measure space with non-negative Ricci curvature.This paper is concerned with the boundary behavior of harmonic function on the(open)upper half-space X×R+.We derive that a function f of bounded mean oscillation(BMO)is the trace of harmonic function u(x,t)on X×R+,u(x,0)=f(x),whenever u satisfies the following Carleson measure condition supxB,rB ∫rB0 fB(xB,rB)|t▽u(x,t)2dμ(x)dt/t-≤C<∞,where ▽=(Vx,?t)denotes the total gradient and B(xB,rB)denotes the(open)ball centered at xB with radius rB.Conversely,the above condition character-izes all the harmonic functions whose traces are in BMO space.
文献关键词:
中图分类号:
作者姓名:
Wanwan YANG;Bo LI
作者机构:
Center for Applied Mathematics,Tianjin University,Tianjin 300072,China
文献出处:
引用格式:
[1]Wanwan YANG;Bo LI-.Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature)[J].中国数学前沿,2022(03):455-471
A类:
supxB,rB0,fB
B类:
Boundary,behavior,harmonic,functions,metric,measure,spaces,negative,Ricci,curvature,Let,This,paper,concerned,boundary,open,upper,half,R+,We,derive,that,bounded,mean,oscillation,BMO,whenever,satisfies,following,Carleson,condition,2d,dt,where,Vx,denotes,total,gradient,ball,centered,radius,Conversely,above,character,izes,whose,traces,are
AB值:
0.48348
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。