典型文献
Unilateral global interval bifurcation for problem with mean curvature operator in Minkowski space and its applications
文献摘要:
In this paper,we establish a unilateral global bifurcation result from interval for a class problem with mean curvature operator in Minkowski space with non-differentiable nonlin-earity.As applications of the above result,we shall prove the existence of one-sign solutions to the following problem{-div(▽v/√1|▽v|2)=α(x)v++β(x)v-+λa(x)f(v),in BR(0),v(x)=0,on ? BR(0),where λ ≠ 0 is a parameter,R is a positive constant andBR(0)={x ∈ RN:|x|<R}is the standard open ball in the Euclidean space RN(N≥1)which is centered at the origin and has radius R.v+=max{v,0},v-=-min{v,0},a(x)∈ C(BR(0),(0,+∞)),α(x),β(x)∈C(BR(0)),a(x),α(x)andβ(x)are radially symmetric with respect to x;f ∈ C(R,R),sf(s)>0 for s ≠ 0,and f0 ∈[0,∞],where f0=lims|→0 f(s)/s.We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results.We also study the asymptotic behaviors of positive radial solutions as λ →+∞.
文献关键词:
中图分类号:
作者姓名:
SHEN Wen-guo
作者机构:
Department of Basic Courses,Lanzhou Institute of Technology,Lanzhou 730050,China
文献出处:
引用格式:
[1]SHEN Wen-guo-.Unilateral global interval bifurcation for problem with mean curvature operator in Minkowski space and its applications)[J].高校应用数学学报B辑(英文版),2022(02):159-176
A类:
v++,andBR,v+,lims
B类:
Unilateral,global,interval,bifurcation,problem,mean,curvature,operator,Minkowski,space,its,applications,In,this,paper,we,establish,unilateral,from,class,differentiable,nonlin,earity,above,shall,prove,existence,sign,solutions,following,div,where,parameter,positive,constant,RN,standard,open,ball,Euclidean,which,centered,origin,has,radius,max,are,radially,symmetric,respect,sf,f0,We,use,techniques,approximation,connected,components,our,main,results,also,study,asymptotic,behaviors
AB值:
0.532075
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。