FAILED
首站-论文投稿智能助手
典型文献
High-energy sodium-ion hybrid capacitors through nanograin-boundary-induced pseudocapacitance of Co3O4 nanorods
文献摘要:
Sodium-ion hybrid capacitors(SICs)have been proposed to bridge performance gaps between batteries and supercapacitors,and thus realize both high energy density and power density in a single configura-tion.Nevertheless,applications of SICs are severely restricted by their insufficient energy densities(<100 Wh/kg)resulted from the kinetics imbalance between cathodes and anodes.Herein,we report a nanograin-boundary-rich hierarchical Co3O4 nanorod anode composed of~20 nm nanocrystallites.Extreme pseudocapacitance(up to 72%@1.0 mV/s)is achieved through nanograin-boundary-induced pseudocapacitive-type Na+storage process.Co3O4 nanorod anode delivers in this case highly reversible capacity(810 mAh/g@0.025 A/g),excellent rate capability(335 mAh/g@5.0 A/g),and improved cycle sta-bility(100 cycles@1.0 A/g with negligible capacity degradation).The outstanding performance can be credited to the hierarchical morphology of Co3O4 nanorods and the well-designed nanograin-boundaries between nanocrystallites that avoid particle agglomeration,induce pseudocapacitive-type Na+storage,and accommodate volume variation during sodiation-desodiation processes.Nitrogen-doping of the Co3O4 nanorods not only generates defects for extra surficial Na+storage but also increases the electronic conductivity for efficient charge separation and lowers energy barrier for Na+intercalation.Synergy of conventional reaction mechanism and pseudocapacitive-type Na+storage enables high speci-fic capacity,rapid Na+diffusion,and improved structural stability of the Co3O4 nanorod electrode.The SIC integrating this highly pseudocapacitive anode and activated carbon cathode delivers exceptional energy density(175 Wh/kg@40 W/kg),power density(6632 W/kg@37 Wh/kg),cycle life(6000 cycles@1.0 A/g with a capacity retention of 81%),and coulombic efficiency(~1 00%).
文献关键词:
作者姓名:
Wenliang Feng;Venkata Sai Avvaru;Steven J.Hinder;Vinodkumar Etacheri
作者机构:
IMDEA Materials Institute,C/Eric Kandel 2,Getafe,Madrid 28906,Spain;Universidad Politécnica de Madrid,E.T.S.de Ingenieros de Caminos,28040 Madrid,Spain;Universidad Autónoma de Madrid,C/Francisco Tomás y Valiente,7,28049 Madrid,Spain;Surface Analysis Laboratory,Faculty of Engineering and Physical Sciences University of Surrey Guildford,Surrey GU2 7XH,United Kingdom
文献出处:
引用格式:
[1]Wenliang Feng;Venkata Sai Avvaru;Steven J.Hinder;Vinodkumar Etacheri-.High-energy sodium-ion hybrid capacitors through nanograin-boundary-induced pseudocapacitance of Co3O4 nanorods)[J].能源化学,2022(06):338-346
A类:
nanograin,nanocrystallites,Na+intercalation,Na+diffusion
B类:
High,energy,sodium,hybrid,through,boundary,induced,pseudocapacitance,Co3O4,nanorods,Sodium,SICs,have,been,proposed,bridge,performance,gaps,between,batteries,supercapacitors,thus,realize,both,density,power,single,configura,Nevertheless,applications,are,severely,restricted,by,their,insufficient,densities,Wh,resulted,from,kinetics,imbalance,cathodes,anodes,Herein,report,rich,hierarchical,composed,Extreme,mV,achieved,pseudocapacitive,type,Na+storage,delivers,this,case,highly,reversible,capacity,mAh,excellent,capability,improved,cycles,negligible,degradation,outstanding,can,credited,morphology,well,designed,boundaries,that,avoid,particle,agglomeration,accommodate,volume,variation,during,desodiation,processes,Nitrogen,doping,not,only,generates,defects,extra,surficial,but,also,increases,electronic,conductivity,efficient,charge,separation,lowers,barrier,Synergy,conventional,reaction,mechanism,enables,speci,rapid,structural,stability,electrode,integrating,activated,carbon,exceptional,life,retention,coulombic,efficiency
AB值:
0.522841
相似文献
Construction of cobalt vacancies in cobalt telluride to induce fast ionic/electronic diffusion kinetics for lithium-ion half/full batteries
Lei Hu;Lin Li;Yuyang Zhang;Xiaohong Tan;Hao Yang;Xiaoming Lin;Yexiang Tong-Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application,School of Chemical and Environmental Engineering,Anhui Polytechnic University,Wuhu 241000,China;MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry,The Key Laboratory of Low-Carbon Chemistry&Energy Conservation of Guangdong Province,School of Chemistry,Sun Yat-Sen University,Guangzhou 510275,China;Key Laboratory of Theoretical Chemistry of Environment,Ministry of Education,School of Chemistry,South China Normal University,Guangzhou 510006,China;Guangxi Key Laboratory of Electrochemical Energy Materials,School of Chemistry&Chemical Engineering,Guangxi University,Nanning 530004,China
Synergistical heterointerface engineering of Fe-Se nanocomposite for high-performance sodium-ion hybrid capacitors
Pu-Guang Ji;Ying Liu;Shuang-Bin Han;Yu-Fu Yan;Oleg Victorovich Tolochko;Eugene Strativnov;Mirtemir Shodievich Kurbanov;Hua Wang;Cheng-Wei Zhang;Gong-Kai Wang-School of Materials Science&Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology,Hebei University of Technology,Tianjin 300130,China;Institute of Machinery,Materials,and Transport,Peter the Great St.Petersburg Polytechnic University,Saint Petersburg 195251,Russian Federation;The Gas Institute of the National Academy of Sciences of Ukraine,Kyiv 03113,Ukraine;Arifov Institute of Ion-Plasma and Laser Technologies,Academy of Sciences of the Republic of Uzbekistan,Tashkent 100125,Uzbekistan;School of Chemistry,Beijing Advanced Innovation Center for Biomedical Engineering,Beihang University,Beijing 100191,China
Nitrogen-doped porous carbon nanofoams with enhanced electrochemical kinetics for superior sodium-ion capacitor
K.Ramachandran;Gokila Subburam;Xian-Hu Liu;Ming-Gang Huang;Chun Xu;Dickon H.L.Ng;Ying-Xue Cui;Guo-Chun Li;Jing-Xia Qiu;Chuan Wang;Jia-Biao Lian-Institute for Energy Research,Jiangsu University,Zhenjiang 212013,China;Key Laboratory of Materials Processing and Mold(Zhengzhou University),Ministry of Education,Zhengzhou University,Zhengzhou 450002,China;Key Laboratory of Fine Chemical Application Technology of Luzhou,Luzhou 646099,China;Department of Physics,The Chinese University of Hong Kong,Hong Kong 999077,China;Jiangsu National Synergetic Innovation Center for Advanced Materials,School of Chemistry and Molecular Engineering,Institute of Advanced Synthesis,Nanjing Technology University,Nanjing 211800,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。