首站-论文投稿智能助手
典型文献
Scalable and highly efficient approach for an on-chip single-photon source
文献摘要:
Integrated photonic circuits with quantum dots provide a promising route for scalable quantum chips with highly efficient photonic sources. However, unpolarized emission photons in general sacrifice half efficiency when coupling to the waveguide fundamental mode by a cross polarization technique for suppressing the excitation laser, while suspended waveguide photonics sources without polarization filters have poor scalability due to their mechanical fragility. Here, we propose a strategy for overcoming the challenge by coupling an elliptical Bragg resonator with waveguides on a solid-state base, featuring near-unity polarization efficiency and enabling on-chip pulsed resonant excitation without any polarization filters. We theoretically demonstrate that the proposed devices have outstanding performance of a single-photon source with 80% coupling efficiency into on-chip planar waveguides and an ultra-small extinction ratio of 10-11, as well as robustness against quantum dot position deviation. Our design provides a promising method for scalable quantum chips with a filter-free high-efficiency single-photon source.
文献关键词:
作者姓名:
Xingyu Chen;Rongbin Su;Jin Liu;Juntao Li;Xue-Hua Wang
作者机构:
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510000, China
引用格式:
[1]Xingyu Chen;Rongbin Su;Jin Liu;Juntao Li;Xue-Hua Wang-.Scalable and highly efficient approach for an on-chip single-photon source)[J].光子学研究(英文),2022(09):2066
A类:
B类:
Scalable,highly,efficient,approach,single,Integrated,circuits,quantum,dots,promising,route,scalable,chips,sources,However,unpolarized,emission,photons,general,sacrifice,half,efficiency,when,coupling,fundamental,mode,by,cross,polarization,technique,suppressing,excitation,laser,while,suspended,photonics,without,filters,have,poor,scalability,due,their,mechanical,fragility,Here,strategy,overcoming,challenge,elliptical,Bragg,resonator,waveguides,solid,state,base,featuring,near,unity,enabling,pulsed,resonant,any,We,theoretically,demonstrate,that,proposed,devices,outstanding,performance,into,planar,ultra,small,extinction,ratio,well,robustness,against,position,deviation,Our,design,provides,method,free
AB值:
0.588838
相似文献
Field distribution of the Z2 topological edge state revealed by cathodoluminescence nanoscopy
Xiao He;Donglin Liu;Hongfei Wang;Liheng Zheng;Bo Xu;Biye Xie;Meiling Jiang;Zhixin Liu;Jin Zhang;Minghui Lu;Zheyu Fang-School of Physics,State Key Lab for Mesoscopic Physics,Academy for Advanced Interdisciplinary Studies,Collaborative Innovation Center of Quantum Matter,and Nano-optoelectronics Frontier Center of Ministry of Education,Peking University Yangtze Delta Institute of Optoelectronics,Peking University,Beijing 100871,China;National Laboratory of Solid State Microstructures,Department of Materials Science and Engineering,Nanjing University,Nanjing 210093,China;College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China;Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong,the University of Hong Kong,Pokfulam Road,Hong Kong,China
Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites
Shilin Jin;Renfu Li;Hai Huang;Naizhong Jiang;Jidong Lin;Shaoxiong Wang;Yuanhui Zheng;Xueyuan Chen;Daqin Chen-College of Physics and Energy,Fujian Normal University,Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials,Fuzhou 350117,China;Fujian Science&Technology Innovation Laboratory for Optoelectronic Information,Fuzhou 350116,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Key Laboratory of Nanomaterials and State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou,Fujian 350002,China;Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering,Fuzhou 350117,China;Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage,Fuzhou 350117,China;College of Chemistry,Fuzhou University,Fuzhou 350116,China
Highly efficient acousto-optic modulation using nonsuspended thin-fil1m lithium niobate-chalcogenide hybrid waveguides
Lei Wan;Zhiqiang Yang;Wenfeng Zhou;Meixun Wen;Tianhua Feng;Siqing Zeng;Dong Liu;Huan Li;Jingshun Pan;Ning Zhu;Weiping Liu;Zhaohui Li-Department of Electronic Engineering,College of Information Science and Technology,Jinan University,510632 Guangzhou,China;Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems,Sun Yat-sen University,510275 Guangzhou,China;State Key Laboratory for Modern Optical Instrumentation,College of Optical Science and Engineering,International Research Center for Advanced Photonics,Zhejiang University,Zijingang Campus,310058 Hangzhou,China;Institute of Semiconductor Science and Technology,Guangdong Engineering Technology Research Center of Low Carbon and New Energy Materials,South China Normal University,510631 Guangzhou,China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),519000 Zhuhai,China
On-chip beam rotators,adiabatic mode converters,and waveplates through low-loss waveguides with variable cross-sections
Bangshan Sun;Fyodor Morozko;Patrick S.Salter;Simon Moser;Zhikai Pong;Raj B.Patel;Ian A.Walmsley;Mohan Wang;Adir Hazan;Nicolas Barré;Alexander Jesacher;Julian Fells;Chao He;Aviad Katiyi;Zhen-Nan Tian;Alina Karabchevsky;Martin J.Booth-Department of Engineering Science,University of Oxford,Oxford OX1 3PJ,UK;School of Electrical and Computer Engineering,Ben-Gurion University of the Negev,P.O.B.653,Beer-Sheva 8410501,Israel;Institute of Biomedical Physics,Medical University of Innsbruck,Müllerstra?e 44,6020 Innsbruck,Austria;Ultrafast Quantum Optics group,Department of Physics,Imperial College London,London,UK;Department of Physics,University of Oxford,Oxford,UK;Erlangen Graduate School in Advanced Optical Technologies(SAOT),Friedrich-Alexander-University Erlangen-Nurnberg,Paul-Gordan-Stra?e 6,91052 Erlangen,Germany;State Key Laboratory of Integrated Optoelectronics,College of Electronic Science and Engineering,Jilin University,Changchun 130012,China
Spectral control of nonclassical light pulses using an integrated thin-film lithium niobate modulator
Di Zhu;Changchen Chen;Mengjie Yu;Linbo Shao;Yaowen Hu;C J.Xin;Matthew Yeh;Soumya Ghosh;Lingyan He;Christian Reimer;Neil Sinclair;Franco N.C.Wong;Mian Zhang;Marko Lon?ar-John A.Paulson School of Engineering and Applied Sciences,Harvard University,Cambridge,MA 02138,USA;Institute of Materials Research and Engineering,Agency for Science,Technology and Research(A*STAR),Singapore 138634,Singapore;Research Laboratory of Electronics,Massachusetts Institute of Technology,Cambridge,MA 02139,USA;HyperLight Corporation,1 Bow Street,Suite 420,Cambridge,MA 02139,USA;Division of Physics,Mathematics and Astronomy,and Alliance for Quantum Technologies(AQT),California Institute of Technology,Pasadena,CA 91125,USA
Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform
Chengli Wang;Jin Li;Ailun Yi;Zhiwei Fang;Liping Zhou;Zhe Wang;Rui Niu;Yang Chen;Jiaxiang Zhang;Ya Cheng;Junqiu Liu;Chun-Hua Dong;Xin Ou-State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,200050 Shanghai,China;The Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,100049 Beijing,China;CAS Key Laboratory of Quantum Information,University of Science and Technology of China,230026 Hefei,China;CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,230026 Hefei,China;The Extreme Optoelectromechanics Laboratory(XXL),School of Physics and Electronic Science,East China Normal University,200241 Shanghai,China;State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,201800 Shanghai,China;International Quantum Academy,518048 Shenzhen,China;Hefei National Laboratory,University of Science and Technology of China,Hefei 230026,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。