FAILED
首站-论文投稿智能助手
典型文献
基于深度学习的磁共振胆胰管成像图像肝外胆管及结石的自动分割:初步研究
文献摘要:
目的 探索使用深度学习方法在磁共振胆胰管成像(MRCP)图像上分割肝外胆管和检出结石的可行性.资料与方法 回顾性收集2019年7月5日—2020年6月30日于北京大学第一医院就诊的225例患者共230人次3D MRCP检查图像数据纳入胆管分割研究;并补充2020年7月1日—2021年2月27日通过经内镜逆行胆胰管成像或临床综合诊断证实的胆总管结石患者数据,最终合计73例存在胆总管结石患者3D MRCP检查图像纳入胆管结石分割研究.由2位影像科专家标注数据,得到267个肝外胆管和98个胆总管结石区域的标签.使用Unet3D网络分两步(coarse-fine)训练胆总管分割模型,将267个数据随机分为训练集213个、调优集27个和测试集27个.以胆总管标签为掩膜(mask),进一步训练胆总管结石的分割模型,将98个数据随机分为训练集80个、调优集9个和测试集9个.使用客观评价指标为测试集的Dice系数,并输出标注区域与模型预测区域的径线、体积等进行比较.主观评价指标包括肝外胆管分割评分、肝外胆管轴位T2WI匹配评分和结石分割评分.结果 肝外胆管分割模型的测试集共27个数据,第一步(coarse)分割肝外胆管的Dice值为0.89±0.07,第二步(fine)分割肝外胆管的Dice值为0.94±0.04.胆总管结石分割模型的测试集共9个数据,分割结石的Dice值为0.83±0.06.主观评价20个临床确诊肝外胆管结石患者数据,肝外胆管分割评分均为满分10分,肝外胆管轴位T2WI匹配评分中位数为9.75分,结石分割评价中位数为8分.结论 通过深度学习方法在MRCP图像上分割肝外胆管是可行的,能较准确地分割胆管结构,并用于结石和胆管梗阻的定位.
文献关键词:
胆管;肝外;胆管疾病;胆管胰造影;磁共振;分割;深度学习
作者姓名:
王可;杨俊哲;刘义;马帅;刘婧;张耀峰;王祥鹏;张晓东;王霄英
作者机构:
北京大学第一医院医学影像科,北京 100034;北京赛迈特锐医学科技有限公司,北京 100011
引用格式:
[1]王可;杨俊哲;刘义;马帅;刘婧;张耀峰;王祥鹏;张晓东;王霄英-.基于深度学习的磁共振胆胰管成像图像肝外胆管及结石的自动分割:初步研究)[J].中国医学影像学杂志,2022(07):703-709,715
A类:
经内镜逆行胆胰管成像,Unet3D,胆管胰造影
B类:
管及,自动分割,使用深度,深度学习方法,MRCP,北京大学第一医院,人次,图像数据,临床综合诊断,胆总管结石患者,患者数据,影像科,两步,coarse,fine,分割模型,训练集,调优,测试集,管标,签为,掩膜,mask,客观评价指标,Dice,径线,主观评价,轴位,T2WI,第一步,第二步,肝外胆管结石,满分,中位数,梗阻,胆管疾病
AB值:
0.199399
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。