首站-论文投稿智能助手
典型文献
Role of nanoparticles in achieving macroscale superlubricity of graphene/nano-SiO2 particle composites
文献摘要:
Recent studies have reported that adding nanoparticles to graphene enables macroscale superlubricity to be achieved.This study focuses on the role of nanoparticles in achieving superlubricity.First,because graphene nanoscrolls can be formed with nanoparticles as seeds under shear force,the applied load(or shear force)is adjusted to manipulate the formation of graphene nanoscrolls and to reveal the relationship between graphene-nanoscroll formation and superlubricating performance.Second,the load-carrying role of spherical nano-SiO2 particles during the friction process is verified by comparison with an elaborately designed fullerene that possesses a hollow-structured graphene nanoscroll.Results indicate that the incorporated nano-SiO2 particles have two roles in promoting the formation of graphene nanoscrolls and exhibiting load-carrying capacity to support macroscale forces for achieving macroscale superlubricity.Finally,macroscale superlubricity(friction coefficient:0.006-0.008)can be achieved under a properly tuned applied load(2.0 N)using a simple material system in which a graphene/nano-SiO2 particle composite coating slides against a steel counterpart ball without a decorated diamond-like carbon film.The approach described in this study could be of significance in engineering.
文献关键词:
作者姓名:
Panpan LI;Li JI;Hongxuan LI;Lei CHEN;Xiaohong LIU;Huidi ZHOU;Jianmin CHEN
作者机构:
Key Laboratory of Science and Technology on Wear and Protection of Materials,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
文献出处:
引用格式:
[1]Panpan LI;Li JI;Hongxuan LI;Lei CHEN;Xiaohong LIU;Huidi ZHOU;Jianmin CHEN-.Role of nanoparticles in achieving macroscale superlubricity of graphene/nano-SiO2 particle composites)[J].摩擦(英文),2022(09):1305-1316
A类:
nanoscrolls,nanoscroll,superlubricating
B类:
Role,nanoparticles,achieving,macroscale,superlubricity,graphene,SiO2,composites,Recent,studies,have,reported,that,adding,enables,achieved,This,study,focuses,First,because,formed,as,seeds,under,shear,applied,load,adjusted,manipulate,formation,reveal,relationship,between,performance,Second,carrying,spherical,during,friction,process,verified,by,comparison,elaborately,designed,fullerene,possesses,hollow,structured,Results,indicate,incorporated,two,roles,promoting,exhibiting,capacity,support,forces,Finally,coefficient,properly,tuned,using,simple,material,system,which,coating,slides,against,steel,counterpart,ball,without,decorated,diamond,like,carbon,film,approach,described,this,could,significance,engineering
AB值:
0.489926
相似文献
Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant:From mechanisms to application
Xin CUI;Changhe LI;Wenfeng DING;Yun CHEN;Cong MAO;Xuefeng XU;Bo LIU;Dazhong WANG;Hao Nan LI;Yanbin ZHANG;Zafar SAID;Sujan DEBNATH;Muhammad JAMIL;Hafiz Muhammad ALI;Shubham SHARMA-School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Chengdu Tool Research Institute Co.,Ltd.Chengdu 610500,China;College of Automotive and Mechanical Engineering,Changsha University of Science and Technology,Changsha 410114,China;Key Laboratory of Special Purpose Equipment and Advanced Processing Technology,Ministry of Education&Zhejiang Province,Zhejiang University of Technology,Hangzhou 310032,China;Sichuan Future Aerospace Industry LLC.,Shifang 618400,China;School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Aerospace,University of Nottingham Ningbo China,Ningbo 315100,China;College of Engineering,University of Sharjah,Sharjah 27272,United Arab Emirates;Mechanical Engineering Department,Curtin University,Miri 98009,Malaysia;Mechanical Engineering Department,King Fahd University of Petroleum and Minerals,Dhahran 31261,Saudi Arabia;Department of Mechanical Engineering and Advanced Materials Science,Council of Scientific and Industrial Research(CSIR)-Central Leather Research Institute(CLRI),Regional Center for Extension and Development,Jalandhar 144021,India
Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries
Yanyi Zhang;Xiang-Peng Kong;Xiaorong Lin;Kailong Hu;Weiwei Zhao;Guoqiang Xie;Xi Lin;Xingjun Liu;Yoshikazu Ito;Hua-Jun Qiu-School of Materials Science and Engineering,Harbin Institute of Technology,Shenzhen 518055,Guangdong,China;Shenzhen R&D Center for Al-based Hydrogen Hydrolysis Materials,Shenzhen 518055,Guangdong,China;State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin 150001,Heilongjiang,China;Blockchain Development and Research Institute,Harbin Institute of Technology,Shenzhen 518055,Guangdong,China;Institute of Applied Physics,Graduate School of Pure and Applied Sciences,University of Tsukuba,Tsukuba 305-8573,Japan
Zeolitic imidazolate framework-67 derived Al-Co-S hierarchical sheets bridged by nitrogen-doped graphene:Incorporation of PANI derived carbon nanorods for solid-state asymmetric supercapacitors
Emad S.Goda;Bidhan Pandit;Sang Eun Hong;Bal Sydulu Singu;Seong K.Kim;Essam B.Moustafa;Kuk Ro Yoon-Organic Nanomaterials Lab,Department of Chemistry,Hannam University,Daejeon 34054,Republic of Korea;Gas Analysis and Fire Safety Laboratory,Chemistry Division,National Institute for Standards,136,Giza 12211,Egypt;Department of Materials Science and Engineering and Chemical Engineering,Universidad Carlos Ⅲ de Madrid,Avenida de La Universidad 30,28911 Leganés,Madrid,Spain;Department of Chemical and Biomolecular Engineering,Yonsei University,Seoul 03722,Republic of Korea;Department of Chemical Engineering,Hannam University,1646 Yuseongdae-ro,Yuseong-gu,Daejeon 34054,Republic of Korea;Mechanical Engineering Department,Faculty of Engineering,King Abdulaziz University,P.O.Box 80204,Jeddah 22254,Saudi Arabia
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。