首站-论文投稿智能助手
典型文献
基于神经网络的全球三维温盐场重构技术研究
文献摘要:
文章利用果蝇优化广义回归神经网络算法FOAGRNN(fruit fly optimization algorithm,FOA;generalized regression neural network,GRNN)对SODA(simple ocean data assimilation)再分析数据进行训练,构建海表温度、盐度、海面高度与次表层温盐场之间的投影关系模型,并在全球范围使用SODA和卫星遥感数据评估了模型的应用性能.首先,利用独立的2016年SODA海表数据作为模型输入进行理想重构试验,结果显示全球重构温、盐平均均方根误差(MRMSE)分别为0.36℃和0.08‰,与世界海洋图集WOA13资料相比减小约50%和60%.然后,利用卫星观测的海表信息作为模型输入进行实际应用试验,并与Argo观测剖面进行比较评估.试验结果表明,重构模型能有效表征海水温、盐特征,其中重构温、盐MRMSE分别为0.79℃和0.16‰,相比WOA气候态减小27%和11%.误差的垂向分布显示,重构温度RMSE从海表向下迅速增大,至100m达到峰值1.35℃,而后又迅速回落,至250m处为0.81℃,跃层往下不断减小;重构盐度RMSE基本随深度增大而减小,误差峰值位于25m附近,约为0.25‰.此外,Argo浮标跟踪分析和区域水团统计结果也表明模型能够较好地刻画海洋三维温盐场的内部结构特征.
文献关键词:
果蝇优化广义回归神经网络算法;三维温盐场;重构;卫星观测数据;SODA再分析数据
作者姓名:
聂旺琛;王喜冬;陈志强;何子康;范开桂
作者机构:
河海大学, 自然资源部海洋灾害预报技术重点实验室, 江苏 南京 2010098;南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519000
文献出处:
引用格式:
[1]聂旺琛;王喜冬;陈志强;何子康;范开桂-.基于神经网络的全球三维温盐场重构技术研究)[J].热带海洋学报,2022(02):1-15
A类:
三维温盐场,果蝇优化广义回归神经网络算法,FOAGRNN,MRMSE,WOA13
B类:
重构技术,fruit,fly,optimization,algorithm,generalized,regression,neural,network,SODA,simple,ocean,data,assimilation,再分析数据,海表温度,盐度,海面高度,关系模型,卫星遥感数据,数据评估,应用性能,模型输入,图集,应用试验,Argo,比较评估,重构模型,水温,气候态,垂向分布,100m,速回,回落,250m,跃层,往下,25m,浮标,跟踪分析,水团,卫星观测数据
AB值:
0.349082
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。