典型文献
The Twisted Homology of Simplicial Set
文献摘要:
In this article,we give a generalization of δ-twisted homology introduced by Jingyan Li,Vladimir Vershinin and Jie Wu,called △-twisted homology,which enriches the theory of δ-(co)homology introduced by Alexander Grigor'yan,Yuri Muranov and Shing-Tung Yau.We show that the Mayer-Vietoris sequence theorem holds for △-twisted homology.Applying the △-twisted ideas to Cartesian products,we introduce the notion of △-twisted Cartesian product on simplicial sets,which generalizes the classical work of Barratt,Gugenheim and Moore on twisted Cartesian products of simplicial sets.Under certain hypothesis,we show that the coordinate projection of △-twisted Cartesian product admits a fibre bundle structure.
文献关键词:
中图分类号:
作者姓名:
Meng Meng ZHANG;Jing Yan LI;Jie WU
作者机构:
School of Mathematical Sciences,Hebei Normal University,Shijiazhuang 050024,P.R.China;Yanqi Lake Beijing Institute of Mathematical Sciences and Applications,Beijing 101408,P.R.China
文献出处:
引用格式:
[1]Meng Meng ZHANG;Jing Yan LI;Jie WU-.The Twisted Homology of Simplicial Set)[J].数学学报(英文版),2022(10):1781-1802
A类:
Simplicial,Jingyan,Vershinin,Grigor,Yuri,Muranov,Shing,Vietoris,simplicial,Gugenheim
B类:
Twisted,Homology,Set,In,this,article,we,give,generalization,twisted,homology,introduced,by,Li,Vladimir,Jie,Wu,called,which,enriches,theory,Alexander,Tung,Yau,We,show,that,Mayer,sequence,theorem,holds,Applying,ideas,Cartesian,products,notion,sets,generalizes,classical,work,Barratt,Moore,Under,certain,hypothesis,coordinate,projection,admits,fibre,bundle,structure
AB值:
0.494784
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。