首站-论文投稿智能助手
典型文献
Scattering for 3D Cubic Focusing NLS on the Domain Outside a Convex Obstacle Revisited
文献摘要:
In this article,we consider the focusing cubic nonlinear Schr?dinger equation(NLS)in the exterior domain outside of a convex obstacle in R3 with Dirichlet boundary conditions.We revisit the scattering result below ground state in Killip-Visan-Zhang[The focusing cubic NLS on exterior domains in three dimensions.Appl.Math.Res.Express.AMRX,1,146-180(2016)]by utilizing the method of Dodson and Murphy[A new proof of scattering below the ground state for the 3d radial focusing cubic NLS.Proc.Amer.Math.Soc.,145,4859-4867(2017)]and the dispersive estimate in Ivanovici and Lebeau[Dispersion for the wave and the Schr?dinger equations outside strictly convex obstacles and counterexamples.Comp.Rend.Math.,355,774-779(2017)],which avoids using the concentration compactness.We conquer the difficulty of the boundary in the focusing case by establishing a local smoothing effect of the boundary.Based on this effect and the interaction Morawetz estimates,we prove that the solution decays at a large time interval,which meets the scattering criterion.
文献关键词:
作者姓名:
Cheng Bin XU;Teng Fei ZHAO;Ji Qiang ZHENG
作者机构:
The Graduate School of China Academy of Engineering Physics,Beijing 100088,P.R.China;School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,P.R.China;Institute of Applied Physics and Computational Mathematics,P.O.Box 8009,Beijing 100088,P.R.China
引用格式:
[1]Cheng Bin XU;Teng Fei ZHAO;Ji Qiang ZHENG-.Scattering for 3D Cubic Focusing NLS on the Domain Outside a Convex Obstacle Revisited)[J].数学学报(英文版),2022(06):1054-1068
A类:
Visan,AMRX,Dodson,Ivanovici,Lebeau,counterexamples,Rend,Morawetz
B类:
Scattering,Cubic,Focusing,NLS,Domain,Outside,Convex,Obstacle,Revisited,In,this,article,consider,focusing,cubic,nonlinear,Schr,dinger,exterior,outside,convex,R3,Dirichlet,boundary,conditions,We,revisit,scattering,result,below,ground,state,Killip,Zhang,domains,three,dimensions,Appl,Math,Res,Express,by,utilizing,method,Murphy,new,proof,3d,radial,Proc,Amer,Soc,dispersive,Dispersion,wave,equations,strictly,obstacles,Comp,which,avoids,concentration,compactness,conquer,difficulty,case,establishing,local,smoothing,effect,Based,interaction,estimates,prove,that,solution,decays,large,interval,meets,criterion
AB值:
0.556639
相似文献
Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate α-RuCl3
Kejing Ran;Jinghui Wang;Song Bao;Zhengwei Cai;Yanyan Shangguan;Zhen Ma;Wei Wang;Zhao-Yang Dong;P.(C)ermák;A.Schneidewind;Siqin Meng;Zhilun Lu;Shun-Li Yu;Jian-Xin Li;Jinsheng Wen-School of Physical Science and Technology,and ShanghaiTech Laboratory for Topological Physics,ShanghaiTech University,Shanghai 200031,China;National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China;Institute for Advanced Materials,Hubei Normal University,Huangshi 435002,China;School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Department of Applied Physics,Nanjing University of Science and Technology,Nanjing 210094,China;Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ),Forschungszentrum Jülich GmbH,Lichtenbergstr.1,85748 Garching,Germany;Charles University,Faculty of Mathematics and Physics,Department of Condensed Matter Physics,Ke Karlovu 5,12116,Praha,Czech Republic;Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,Hahn-Meitner-Platz 1D-14109,Berlin,Germany;China Institute of Atomic Energy (CIAE),Beijing 102413,China;The Henry Royce Institute and Department of Materials Science and Engineering,The University of Sheffield,Sir Robert Hadfield Building,Sheffield,S13JD,United Kingdom;Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。