典型文献
Pointwise Characterizations of Besov and Triebel-Lizorkin Spaces with Generalized Smoothness and Their Applications
文献摘要:
In this article,the authors first establish the pointwise characterizations of Besov and Triebel-Lizorkin spaces with generalized smoothness on Rn via the Haj?asz gradient sequences,which serve as a way to extend these spaces to more general metric measure spaces.Moreover,on metric spaces with doubling measures,the authors further prove that the Besov and the Triebel-Lizorkin spaces with generalized smoothness defined via Haj?asz gradient sequences coincide with those defined via hyperbolic fillings.As an application,some trace theorems of these spaces on Ahlfors regular spaces are established.
文献关键词:
中图分类号:
作者姓名:
Zi Wei LI;Da Chun YANG;Wen YUAN
作者机构:
Laboratory of Mathematics and Complex Systems(Ministry of Education of China),School of Mathematical Sciences,Beijing Normal University,Beijing 100875,P.R.China
文献出处:
引用格式:
[1]Zi Wei LI;Da Chun YANG;Wen YUAN-.Pointwise Characterizations of Besov and Triebel-Lizorkin Spaces with Generalized Smoothness and Their Applications)[J].数学学报(英文版),2022(04):623-661
A类:
Haj,asz,Ahlfors
B类:
Pointwise,Characterizations,Besov,Triebel,Lizorkin,Spaces,Generalized,Smoothness,Their,Applications,In,this,article,authors,first,pointwise,characterizations,spaces,generalized,smoothness,Rn,via,gradient,sequences,which,serve,way,extend,these,more,metric,Moreover,doubling,measures,further,prove,that,defined,coincide,those,hyperbolic,fillings,application,some,trace,theorems,regular,are,established
AB值:
0.514258
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。