首站-论文投稿智能助手
典型文献
Black Phosphorus/Nanocarbons Constructing a Dual-Carbon Conductive Network for High-Performance Sodium-Ion Batteries
文献摘要:
Black phosphorus has been recognized as a prospective candidate anode material for sodium-ion batteries (SIBs) due to its ultrahigh theoretical capacity of 2596 mA·h/g and high electric conductivity of ≈ 300 S/m. However, its large volume expan-sion and contraction during sodiation/desodiation lead to poor cycling stability. In this work, a BP/graphite nanoparticle/nitrogen-doped multiwalled carbon nanotubes (BP/G/CNTs) composite with a dual-carbon conductive network is successfully fabricated as a promising anode material for SIBs through a simple two-step mechanical milling process. The unique structure can mitigate the effect of volume changes and provide additional electron conduction pathways during cycles. Furthermore, the formation of P–O–C bonds helps maintain the intimate connection between phosphorus and carbon, thereby improving the cycling and rate performance. As a result, the BP/G/CNTs composite delivers a high initial Coulombic efficiency (89.6%) and a high specific capacity for SIBs (1791.3 mA·h/g after 100 cycles at 519.2 mA/g and 1665.2 mA·h/g after 100 cycles at 1298 mA/g). Based on these results, the integrated strategy of one- and two-dimensional carbon materials can guide other anode materials for SIBs.
文献关键词:
作者姓名:
Leping Dang;Jiawei He;Hongyuan Wei
作者机构:
School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China
引用格式:
[1]Leping Dang;Jiawei He;Hongyuan Wei-.Black Phosphorus/Nanocarbons Constructing a Dual-Carbon Conductive Network for High-Performance Sodium-Ion Batteries)[J].天津大学学报(英文版),2022(02):132-143
A类:
Nanocarbons
B类:
Black,Phosphorus,Constructing,Dual,Carbon,Conductive,Network,High,Performance,Sodium,Ion,Batteries,phosphorus,has,been,recognized,prospective,candidate,anode,sodium,batteries,SIBs,due,its,ultrahigh,theoretical,capacity,mA,electric,conductivity,However,large,volume,expan,contraction,during,desodiation,lead,poor,cycling,stability,In,this,graphite,nanoparticle,nitrogen,doped,multiwalled,nanotubes,CNTs,composite,dual,conductive,network,successfully,fabricated,promising,through,simple,step,mechanical,milling,process,unique,structure,mitigate,effect,changes,provide,additional,electron,conduction,pathways,cycles,Furthermore,formation,bonds,helps,maintain,intimate,connection,between,thereby,improving,performance,delivers,initial,Coulombic,efficiency,specific,after,Based,these,results,integrated,strategy,one,dimensional,materials,guide,other
AB值:
0.637254
相似文献
Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode
Kui Lin;Xiaofu Xu;Xianying Qin;Ming Liu;Liang Zhao;Zijin Yang;Qi Liu;Yonghuang Ye;Guohua Chen;Feiyu Kang;Baohua Li-Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center,Tsinghua Shenzhen International Graduate School,Shenzhen 518055,People's Republic of China;School of Materials Science and Engineering,Tsinghua University,Beijing 100084,People's Republic of China;Contemporary Amperex Technology Co.Ltd.,Ningde 352100,People's Republic of China;Shenzhen Graphene Innovation Center Co.Ltd.,Shenzhen 518055,People's Republic of China;College of Materials Science and Engineering,Hunan University,Changsha 410082,People's Republic of China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong 999077,People's Republic of China
Revisiting the Role of Physical Confinement and Chemical Regulation of 3D Hosts for Dendrite-Free Li Metal Anode
Shufen Ye;Xingjia Chen;Rui Zhang;Yu Jiang;Fanyang Huang;Huijuan Huang;Yu Yao;Shuhong Jiao;Xiang Chen;Qiang Zhang;Yan Yu-Hefei National Center for Physical Sciences at the Microscale,Department of Materials Science and Engineering,iChEM(Collaborative Innovation Center of Chemistry for Energy Materials),CAS Key Laboratory of Materials for Energy Conversion,University of Science and Technology of China,Hefei 230026,Anhui,People's Republic of China;Advanced Research Institute of Multidisciplinary Science,Beijing Institute of Technology,Beijing 100081,People's Republic of China;School of Materials Science and Engineering,Anhui University,Hefei 230601,Anhui,People's Republic of China;Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology,Department of Chemical Engineering,Tsinghua University,Beijing 100084,People's Republic of China;National Synchrotron Radiation Laboratory,Hefei 230026,Anhui,People's Republic of China
Elastic Buffering Layer on CuS Enabling High-Rate and Long-Life Sodium-Ion Storage
Yuanhua Xiao;Feng Yue;Ziqing Wen;Ya Shen;Dangcheng Su;Huazhang Guo;Xianhong Rui;Liming Zhou;Shaoming Fang;Yan Yu-Key Laboratory of Surface and Interface Science and Technology,Zhengzhou University of Light Industry,Zhengzhou 450002,People's Republic of China;Institute of Nanochemistry and Nanobiology,School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,People's Republic of China;Institute School of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,People's Republic of China;Hefei National Research Center for Physical Sciences at the Microscale,Department of Materials Science and Engineering,National Synchrotron Radiation Laboratory,CAS Key Laboratory of Materials for Energy Conversion,University of Science and Technology of China.Hefei,Anhui 230026,People's Republic of China
Self-Assembled VS4 Hierarch itectures with Enhanced Capacity and Stability for Sodium Storage
Siling Cheng;Kaitong Yao;Kunxiong Zheng;Qifei Li;Dong Chen;Yu Jiang;Weiling Liu;Yuezhan Feng;Xianhong Rui;Yan Yu-School of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,China;Hefei National Laboratory for Physical Sciences at the Microscale,Department of Materials Science and Engineering,Key Laboratory of Materials for Energy Conversion,Chinese Academy of Sciences(CAS),University of Science and Technology of China,Hefei 230026,China;School of Materials Science and Engineering,Nanyang Technological University,Singapore 639798,Singapore;Key Laboratory of Materials Processing and Mold,Ministry of Education,Zhengzhou University,Zhengzhou 450002,China;Dalian National Laboratory for Clean Energy(DNL),Chinese Academy of Sciences(CAS),Dalian 116023,China
Approaching Superior Potassium Storage of Carbonaceous Anode Through a Combined Strategy of Carbon Hybridization and Sulfur Doping
Qianqian Yao;Yanmei Gan;Zuju Ma;Xiangying Qian;Suzhi Cai;Yi Zhao;Lunhui Guan;Wei Huang-Fujian Cross Strait Institute of Flexible Electronics(Future Technologies),Fujian Normal University,Fuzhou 350117,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Key Laboratory of Nanomaterials,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350108,China;School of Environmental and Materials Engineering,Yantai University,Yantai 264005,China;Shaanxi Institute of Flexible Electronics(SIFE),Northwestern Polytechnical University(NPU),Xi'an 710072,China;Key Laboratory of Flexible Electronics(KLOFE)&Institute of Advanced Materials(IAM),Nanjing Tech University(NanjingTech),Nanjing 211800,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。