首站-论文投稿智能助手
典型文献
Ultrafast low-pump fluence all-optical modulation based on graphene-metal hybrid metasurfaces
文献摘要:
Graphene is an attractive material for all-optical modulation because of its ultrafast optical response and broad spectral coverage.However,all-optical graphene modulators reported so far require high pump fluence due to the ultrashort photo-carrier lifetime and limited absorption in graphene.We present modulator designs based on graphene-metal hybrid plasmonic metasurfaces with highly enhanced light-graphene interaction in the nanoscale hot spots at pump and probe(signal)wavelengths.Based on this design concept,we have demonstrated high-speed all-optical modulators at near and mid-infrared wavelengths(1.56 pm and above 6 pm)with significantly reduced pump fluence(1-2 orders of magnitude)and enhanced optical modulation.Ultrafast near-infrared pump-probe measurement results suggest that the modulators'response times are ultimately determined by graphene's ultrafast photocarrier relaxation times on the picosecond scale.The proposed designs hold the promise to address the challenges in the realization of ultrafast all-optical modulators for mid-and far-infrared wavelengths.
文献关键词:
作者姓名:
Ali Basiri;Md Zubair Ebne Rafique;Jing Bai;Shinhyuk Choi;Yu Yao
作者机构:
School of Electrical,Computer and Energy Engineering,Arizona State University,Tempe,AZ,USA;Center for Photonic Innovation,Arizona State University,Tempe,AZ,USA
引用格式:
[1]Ali Basiri;Md Zubair Ebne Rafique;Jing Bai;Shinhyuk Choi;Yu Yao-.Ultrafast low-pump fluence all-optical modulation based on graphene-metal hybrid metasurfaces)[J].光:科学与应用(英文版),2022(05):911-924
A类:
B类:
Ultrafast,low,pump,fluence,optical,modulation,graphene,metal,hybrid,metasurfaces,Graphene,attractive,material,because,its,ultrafast,response,broad,spectral,coverage,However,modulators,reported,far,require,due,ultrashort,lifetime,limited,absorption,We,present,designs,plasmonic,highly,enhanced,light,interaction,nanoscale,spots,probe,signal,wavelengths,Based,this,concept,have,demonstrated,speed,near,mid,infrared,pm,above,significantly,reduced,orders,magnitude,measurement,results,suggest,that,times,ultimately,determined,by,photocarrier,relaxation,picosecond,proposed,hold,promise,address,challenges,realization
AB值:
0.499148
相似文献
Mid-infrared active metasurface based on Si/VO2 hybrid meta-atoms
TONGTONG KANG;BOYU FAN;JUN QIN;WEIHAO YANG;SHUANG XIA;ZHENG PENG;BO LIU;SUI PENG;XIAO LIANG;TINGTING TANG;LONGJIANG DENG;YI LUO;HANBIN WANG;QIANG ZHOU;LEI BI-National Engineering Research Center of Electromagnetic Radiation Control Materials,University of Electronic Science and Technology of China,Chengdu 610054,China;State Key Laboratory of Electronic Thin-Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China;Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 610054,China;College of Optoelectronic Engineering,Chengdu University of Information Technology,Chengdu 610225,China;State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization,Panzhihua 617000,China;Microsystem&Terahertz Research Center,China Academy of Engineering Physics(CAEP),Chengdu 610200,China;Institute of Electronic Engineering,China Academy of Engineering Physics(CAEP),Mianyang 621900,China
Broadband 1T-polytype tantalum disulfide saturable absorber for solid-state bulk lasers
Mengxia Wang;Hailong Qiu;Tianwen Yang;Zhengping Wang;Chuanrui Zhao;Yuanan Zhao;Ting Yu;Yuyao Jiang;Meiling Chen;Yafei Lian;Ge Zhang;Hongjun Liu;Zhanggui Hu;Jianda Shao-Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China;State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;Laboratory of High Power Fiber Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;College of Science, Shanghai University, Shanghai 200444, China;Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;e-mail: qiu@tjut.edu.cn;e-mail: yazhao@siom.ac.cn;e-mail: jdshao@siom.ac.cn
Broadband 1T-polytype tantalum disulfide saturable absorber for solid-state bulk lasers
MENGXIA WANG;HAILONG QIU;TIANWEN YANG;ZHENGPING WANG;CHUANRUI ZHAO;YUANAN ZHAO;TING YU;YUYAO JIANG;MEILING CHEN;YAFEI LIAN;GE ZHANG;HONGJUN LIU;ZHANGGUI HU;JIANDA SHAO-Laboratory of Thin Film Optics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Tianjin Key Laboratory of Functional Crystal Materials,Institute of Functional Crystal,Tianjin University of Technology,Tianjin 300384,China;State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China;Laboratory of High Power Fiber Laser Technology,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;College of Science,Shanghai University,Shanghai 200444,China;Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。