FAILED
首站-论文投稿智能助手
典型文献
On chip chiral and plasmonic hybrid dimer or tetramer:Generic way to reverse longitudinal and lateral optical binding forces
文献摘要:
For both the longitudinal binding force and the lateral binding force,a generic way of controlling the mutual attraction and repulsion(usually referred to as reversal of optical binding force)between chiral and plasmonic hybrid dimers or tetramers has not been reported so far.In this paper,by using a simple plane wave and an onchip configuration,we propose a possible generic way to control the binding force for such hybrid objects in both the near-field region and the far-field region.We also investigate different inter-particle distances while varying the wavelengths of light for each inter-particle distance throughout the investigations.First of all,for the case of longitudinal binding force,we find that chiral-plasmonic hybrid dimer pairs do not exhibit any reversal of optical binding force in the near-field region nor in the far-field region when the wavelength of light is varied in an air medium.However,when the same hybrid system of nanoparticles is placed over a plasmonic substrate,a possible chip,it is possible to achieve a reversal of the longitudinal optical binding force.Later,for the case of lateral optical binding force,we investigate a setup where we place the chiral and plasmonic tetramers on a plasmonic substrate by using two chiral nanoparticles and two plasmonic nanoparticles,with the setup illuminated by a circularly polarized plane wave.By applying the left-handed and the right-handed circular polarization state of light,we also observe the near-field and the far-field reversal of lateral optical binding force for both cases.As far as we know,so far,no work has been reported in the literature on the generic way of reversing the longitudinal optical binding force and the lateral optical binding force of such hybrid objects.Such a generic way of controlling optical binding forces can have important applications in different fields of science and technology in the near future.
文献关键词:
作者姓名:
Sudipta Biswas;RoksanaKhanam Rumi;Tasnia Rahman Raima;SaikatChandra Das;M R C Mahdy
作者机构:
Department of Electrical&Computer Engineering,North South University,Bashundhara,Dhaka,1229,Bangladesh
引用格式:
[1]Sudipta Biswas;RoksanaKhanam Rumi;Tasnia Rahman Raima;SaikatChandra Das;M R C Mahdy-.On chip chiral and plasmonic hybrid dimer or tetramer:Generic way to reverse longitudinal and lateral optical binding forces)[J].中国物理B(英文版),2022(05):347-358
A类:
tetramers,onchip
B类:
On,chiral,plasmonic,hybrid,Generic,way,reverse,longitudinal,lateral,optical,binding,forces,For,both,generic,controlling,mutual,attraction,repulsion,usually,referred,reversal,between,dimers,has,not,been,reported,far,In,this,paper,by,using,simple,plane,configuration,propose,possible,such,objects,near,region,We,also,investigate,different,inter,distances,while,varying,wavelengths,light,each,throughout,investigations,First,find,that,pairs,do,exhibit,any,nor,when,varied,medium,However,same,system,nanoparticles,placed,over,substrate,achieve,Later,setup,where,two,illuminated,circularly,polarized,By,applying,left,handed,right,polarization,state,observe,cases,know,work,literature,reversing,Such,can,have,important,applications,fields,science,technology,future
AB值:
0.367784
相似文献
Light-induced tumor theranostics based on chemical-exfoliated borophene
Zhongjian Xie;Yanhong Duo;Taojian Fan;Yao Zhu;Shuai Feng;Chuanbo Li;Honglian Guo;Yanqi Ge;Shakeel Ahmed;Weichun Huang;Huiling Liu;Ling Qi;Rui Guo;Defa Li;Paras N.Prasad;Han Zhang-Institute of Pediatrics,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Shenzhen Engineering Laboratory of phosphorene and Optoelectronics;International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education,Shenzhen Institute of Translational Medicine,Department of Otolaryngology,Shenzhen Second People's Hospital,the First Affiliated Hospital,Institute of Microscale Optoelectronics,Shenzhen University,518060 Shenzhen,China;Department of Microbiology,Tumor and Cell Biology(MTC),Karolinska Institute,Stockholm,Sweden;Shenzhen Medical Ultrasound Engineering Center,Department of Ultrasonography,Shenzhen People's Hospital,Second Clinical Medical College of Jinan University,First Clinical Medical College of Southern University of Science and Technology,518020 Shenzhen,China;Optoelectronics Research Center,School of Science,Minzu University of China,100081 Beijing,PR China;Nantong Key Lab of Intelligent and New Energy Materials,College of Chemistry and Chemical Engineering,Nantong University,226019 Nantong,Jiangsu,China;Key Laboratory of Biomaterials of Guangdong Higher Education Institutes,Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development,Department of Biomedical Engineering,Jinan University,510632 Guangzhou,China;Department of Core Medical Laboratory,the Sixth Affiliated Hospital of Guangzhou Medical University,Qingyuan People's Hospital,Qingyuan,Guang Dong Province,China;Department of Laboratory Medicine,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Institute for Lasers,Photonics,and Biophotonics and Department of Chemistry,University at Buffalo,State University of New York,Buffalo,NY,USA
Terahertz structured light:nonparaxial Airy imaging using silicon diffractive optics
Rusnè lva?kevi?iūtè-Povilauskienè;Paulius Kizevi?ius;Ernestas Nacius;Domas Jokubauskis;K?stutis lkamas;Alvydas Lisauskas;Natalia Alexeeva;leva Matulaitienè;Vytautas Jukna;Sergej Orlov;Linas Minkevi?ius;Gintaras Valu?is-Department of Optoelectronics,Center for Physical Sciences and Technology,Sauletekio av.3,Vilnius 10257,Lithuania;Department of Fundamental Research,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Applied Electrodynamics&Telecommunications,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania;CENTERA Labs.,Institute of High Pressure Physics PAS,ul.Sokolowska 29/37,Warsaw 01-142,Poland;Department of Organic Chemistry,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Photonics and Nanotechnology,Department of Physics,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania
Mid-infrared active metasurface based on Si/VO2 hybrid meta-atoms
TONGTONG KANG;BOYU FAN;JUN QIN;WEIHAO YANG;SHUANG XIA;ZHENG PENG;BO LIU;SUI PENG;XIAO LIANG;TINGTING TANG;LONGJIANG DENG;YI LUO;HANBIN WANG;QIANG ZHOU;LEI BI-National Engineering Research Center of Electromagnetic Radiation Control Materials,University of Electronic Science and Technology of China,Chengdu 610054,China;State Key Laboratory of Electronic Thin-Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China;Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 610054,China;College of Optoelectronic Engineering,Chengdu University of Information Technology,Chengdu 610225,China;State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization,Panzhihua 617000,China;Microsystem&Terahertz Research Center,China Academy of Engineering Physics(CAEP),Chengdu 610200,China;Institute of Electronic Engineering,China Academy of Engineering Physics(CAEP),Mianyang 621900,China
Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point
Tuo Liu;Shuowei An;Zhongming Gu;Shanjun Liang;He Gao;Guancong Ma;Jie Zhu-Key Laboratory of Noise and Vibration Research,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,China;The Hong Kong Polytechnic University Shenzhen Research Institute,Shenzhen 518057,China;Institute of Acoustics,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China;Division of Science,Engineering and Health Studies,College of Professional and Continuing Education,The Hong Kong Polytechnic University,Hong Kong,China;Department of Physics,Hong Kong Baptist University,Hong Kong,China
Quantum precision measurement of two-dimensional forces with 10-28-Newton stability
Xinxin Guo;Zhongcheng Yu;Fansu Wei;Shengjie Jin;Xuzong Chen;Xiaopeng Li;Xibo Zhang;Xiaoji Zhou-State Key Laboratory of Advanced Optical Communication System and Network,School of Electronics,Peking University,Beijing 100871,China;State Key Laboratory of Surface Physics,Key Laboratory of Micro and Nano Photonic Structures(MOE),and Department of Physics,Fudan University,Shanghai 200433,China;Institute for Nanoelectronic Devices and Quantum Computing,Fudan University,Shanghai 200433,China;Shanghai Qi Zhi Institute,Al Tower,Xuhui District,Shanghai 200232,China;Shanghai Research Center for Quantum Sciences,Shanghai 201315,China;International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China;Institute of Advanced Functional Materials and Devices,Shanxi University,Taiyuan 030031,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。