首站-论文投稿智能助手
典型文献
基于自编码网络的海上风电机组典型故障诊断方法
文献摘要:
当前海上风电机组故障诊断大多只利用SCADA系统数据或振动监测系统数据中一种数据源,诊断精度较低.为此,提出一种基于自编码网络的海上风电机组典型故障的数据融合诊断方法.首先,采用自编码网络分别对SCADA系统数据和振动监测数据的故障特征降维,并将二者融合.然后,采用两类故障特征融合的深度自编码网络故障诊断模型对典型故障进行检测及分类.最后,通过实际运行案例验证了本文提出的深度自编码网络故障诊断模型的有效性.
文献关键词:
海上风电机组;数据融合;典型故障;智能诊断;自编码网络
作者姓名:
李鹏;张凡;马溪原;姚森敬;王晓东;吴宇航;徐臻;杨苹
作者机构:
南方电网数字电网研究院,广东 广州 510630;国家电投集团广西电力有限公司,广西 南宁 530000;华南理工大学广东省绿色能源技术重点实验室,广东 广州 510641
文献出处:
引用格式:
[1]李鹏;张凡;马溪原;姚森敬;王晓东;吴宇航;徐臻;杨苹-.基于自编码网络的海上风电机组典型故障诊断方法)[J].水力发电,2022(08):95-100
A类:
B类:
海上风电机组,典型故障,故障诊断方法,前海,多只,SCADA,系统数据,振动监测系统,数据源,数据融合,融合诊断,故障特征,特征降维,特征融合,深度自编码网络,网络故障诊断,故障诊断模型,实际运行,智能诊断
AB值:
0.175106
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。