典型文献
                采用多路图注意力网络的情绪脑电信号识别方法
            文献摘要:
                    情绪是一种大脑产生的主观认知的概括.脑信号解码技术可以以一种较客观的方式来有效地研究人的情绪及其相关认知行为.本文提出了一种基于图注意力网络的脑电情绪识别方法(multi-path graph attention networks,MPGAT),该方法通过对脑电信号通道建图,利用卷积层提取脑电信号的时域特征以及各频带的特征,使用图注意力网络进一步捕捉情绪脑电信号的局部特征以及各脑区之间的内在功能关系,进而构建出更好的脑电信号表征.MPGAT在SEED和SEED-IV数据集的跨被试情绪识别平均准确率分别为86.03%、72.71%,在DREAMER数据集的效价(valence)和唤醒(arousal)维度的跨被试平均准确率分别为76.35%和75.46%,达到并部分超过了目前最先进脑电情绪识别方法的性能.本文所提出的脑电信号处理方法有望为情绪认知科学研究与情绪脑机接口系统提供新的技术手段.
                文献关键词:
                    情绪识别;跨被试;图卷积神经网路;图注意力网络;脑电信号;脑机接口;神经网络;深度学习
                中图分类号:
                    
                作者姓名:
                    
                        李景聪;潘伟健;林镇远;陈希昶;潘家辉
                    
                作者机构:
                    华南师范大学 软件学院,广东 佛山 528200
                文献出处:
                    
                引用格式:
                    
                        [1]李景聪;潘伟健;林镇远;陈希昶;潘家辉-.采用多路图注意力网络的情绪脑电信号识别方法)[J].智能系统学报,2022(03):531-539
                    
                A类:
                MPGAT,DREAMER,图卷积神经网路
                B类:
                    多路,路图,图注意力网络,信号识别,主观认知,信号解码,认知行为,脑电情绪识别,multi,path,graph,attention,networks,建图,卷积层,时域特征,频带,局部特征,脑区,功能关系,SEED,IV,跨被试,平均准确率,效价,valence,arousal,最先,脑电信号处理,情绪认知,认知科学,脑机接口
                AB值:
                    0.286125
                相似文献
                
            机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。