首站-论文投稿智能助手
典型文献
基于K近邻的运动想象分类中的噪声效益
文献摘要:
关于脑电信号中的噪声处理问题一直是脑-机接口(BCI)领域的重点研究方向,通常认为噪声是有害的,所以针对脑电信号中的噪声处理往往以降噪或消噪为主.但是根据随机共振(SR)的思想,在非线性系统中噪声往往能增强信号处理,而脑电信号恰好具有非线性的特征,因此提出运用高斯噪声提高运动想象脑电信号的识别率.通过在脑电信号中加入独立的高斯噪声,将原始训练集与添加噪声的训练集串联起来增加训练样本量,考虑训练样本量增加与否和噪声加入的阶段(训练或/和测试);通过共空间模式(CSP)和小波包变换(WPT)提取分类特征,并用K近邻(KNN)算法进行分类.实验结果表明,只要加入适当强度的噪声,均可提高系统的分类准确率,出现随机共振现象;增加训练样本量的同时在训练集和测试集中加入适当强度相同的噪声,系统最大平均分类准确率相比不加噪声时增加9.28个百分点;K近邻算法的最大平均分类准确率相比决策树(DT)和支持向量机(SVM)而言整体更高,体现出K近邻算法的优越性和可靠性.
文献关键词:
随机共振;高斯噪声;K近邻;运动想象;脑电信号
作者姓名:
陈佳卉;王友国;翟其清
作者机构:
南京邮电大学 理学院,江苏 南京 210023
引用格式:
[1]陈佳卉;王友国;翟其清-.基于K近邻的运动想象分类中的噪声效益)[J].计算机技术与发展,2022(01):79-84
A类:
B类:
声效,噪声处理,BCI,降噪,消噪,随机共振,SR,非线性系统,信号处理,恰好,出运,高斯噪声,运动想象脑电信号,识别率,训练集,加训,训练样本,样本量,共空间模式,CSP,小波包变换,WPT,取分,分类特征,KNN,分类准确率,共振现象,测试集,大平,平均分,不加,百分点,近邻算法,决策树,DT
AB值:
0.298629
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。