典型文献
基于MEMS谐振器硬件储备池计算的类脑信号处理方法
文献摘要:
近年来兴起的人工神经网络由于具有较强的自学习适应性和并行信息处理能力,从而在信号处理领域显示出巨大潜力.储备池计算是一种由递归神经网络衍生而来的类脑神经形态计算范式,对随时间变化的连续信号具有非常好的分类和时序预测能力.本论文提出利用MEMS(Micro-Electro-Mechanical System)梁谐振器的非线性响应特征,设计并搭建了两种储备池计算的拓扑架构.此外,面向雷达信号处理中信号预测、图像识别、雷达信号特征分类和提取等应用需求,针对性地选择了 NARMA(Nonlinear Auto Regressive Moving Average Equation of Order)预测任务、MNIST(Mixed National Institute of Standards and Technology)-手写数字图像识别、LFM(Linear frequency modulated)脉冲波形识别与特征提取等测试任务对论文所提两种不同储备池计算架构进行试验验证.同时,实验结果也充分展示了基于非线性MEMS谐振器的储备池计算硬件系统在雷达信号预测、分类与特征提取等应用领域中的应用潜力.为复杂电磁环境下,雷达信号处理提供新的有力工具,也为MEMS传感技术与雷达信号处理技术的交叉融合进行积极探索.
文献关键词:
时序信号处理;微机电系统谐振器;储备池计算
中图分类号:
作者姓名:
邹旭东;杨伍昊;郭潇威;孙杰;郑天依
作者机构:
传感技术国家重点实验室,中国科学院空天信息创新研究院,北京100190;齐鲁空天信息研究院,山东济南250132
文献出处:
引用格式:
[1]邹旭东;杨伍昊;郭潇威;孙杰;郑天依-.基于MEMS谐振器硬件储备池计算的类脑信号处理方法)[J].信号处理,2022(11):2287-2298
A类:
NARMA,时序信号处理,微机电系统谐振器
B类:
MEMS,储备池计算,人工神经网络,自学习,学习适应性,信息处理能力,巨大潜力,算是,递归神经网络,脑神经,神经形态计算,计算范式,时序预测,预测能力,本论,Micro,Electro,Mechanical,System,非线性响应,响应特征,拓扑架构,雷达信号处理,中信,信号预测,信号特征,特征分类,应用需求,Nonlinear,Auto,Regressive,Moving,Average,Equation,Order,MNIST,Mixed,National,Institute,Standards,Technology,手写数字图像,数字图像识别,LFM,Linear,frequency,modulated,脉冲波形,波形识别,测试任务,计算架构,计算硬件,硬件系统,复杂电磁环境,传感技术,交叉融合
AB值:
0.391732
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。