首站-论文投稿智能助手
典型文献
The chromatin remodeler BRAHMA recruits HISTONE DEACETYLASE6 to regulate root growth inhibition in response to phosphate starvation in ArabidopsisFA
文献摘要:
Plasticity in root system architecture (RSA) allows plants to adapt to changing nutritional status in the soil. Phosphorus availability is a major deter-minant of crop yield, and RSA remodeling is crit-ical to increasing the efficiency of phosphorus acquisition. Although substantial progress has been made in understanding the signaling mech-anism driving phosphate starvation responses in plants, whether and how epigenetic regulatory mechanisms contribute is poorly understood. Here, we report that the Switch defective/sucrose non-fermentable (SWI/SNF) ATPase BRAHMA (BRM) is involved in the local response to phos-phate (Pi) starvation. The loss of BRM function induces iron (Fe) accumulation through increased LOW PHOSPHATE ROOT1 (LPR1) and LPR2 ex-pression, reducing primary root length under Pi deficiency. We also demonstrate that BRM re-cruits the histone deacetylase (HDA) complex HDA6-HDC1 to facilitate histone H3 deacetylation at LPR loci, thereby negatively regulating local Pi deficiency responses. BRM is degraded under Pi deficiency conditions through the 26 S protea-some pathway, leading to increased histone H3 acetylation at the LPR loci. Collectively, our data suggest that the chromatin remodeler BRM, in concert with HDA6, negatively regulates Fe-dependent local Pi starvation responses by transcriptionally repressing the RSA-related genes LPR1 and LPR2 in Arabidopsis thaliana.
文献关键词:
作者姓名:
Tao Li;Ruyue Zhang;Viswanathan Satheesh;Peng Wang;Guojie Ma;Jianfei Guo;Guo-Yong An;Mingguang Lei
作者机构:
Shanghai Center for Plant Stress Biology,CAS Center for Excellence in Molecular Plant Sciences,Chinese Academy of Sciences,Shanghai 201602,China;University of Chinese Academy of Sciences,Beijing 100049,China;State Key Laboratory of Crop Stress Adaptation and Improvement,School of Life Sciences,Henan University,Kaifeng 475004,China
引用格式:
[1]Tao Li;Ruyue Zhang;Viswanathan Satheesh;Peng Wang;Guojie Ma;Jianfei Guo;Guo-Yong An;Mingguang Lei-.The chromatin remodeler BRAHMA recruits HISTONE DEACETYLASE6 to regulate root growth inhibition in response to phosphate starvation in ArabidopsisFA)[J].植物学报(英文版),2022(12):2314-2326
A类:
remodeler,BRAHMA,HISTONE,DEACETYLASE6,ArabidopsisFA,minant,PHOSPHATE,ROOT1,LPR1,LPR2,cruits,HDA6,HDC1,protea
B类:
chromatin,recruits,root,growth,inhibition,phosphate,starvation,Plasticity,system,architecture,RSA,allows,plants,adapt,changing,nutritional,status,soil,Phosphorus,availability,major,deter,crop,yield,remodeling,crit,ical,increasing,efficiency,phosphorus,acquisition,Although,substantial,progress,has,been,made,understanding,signaling,driving,responses,whether,how,epigenetic,regulatory,mechanisms,contribute,poorly,understood,Here,we,report,that,Switch,defective,sucrose,fermentable,SWI,SNF,ATPase,BRM,involved,local,Pi,loss,function,induces,iron,accumulation,through,increased,LOW,pression,reducing,primary,length,deficiency,We,also,demonstrate,histone,deacetylase,complex,facilitate,H3,deacetylation,loci,thereby,negatively,regulating,degraded,conditions,some,pathway,leading,Collectively,our,data,suggest,concert,regulates,dependent,transcriptionally,repressing,related,genes,thaliana
AB值:
0.488397
相似文献
Romidepsin (FK228) improves the survival of allogeneic skin grafts through downregulating the production of donor-specific antibody via suppressing the IRE1 α-XBP1 pathway
Yuliang GUO;Siyu SONG;Xiaoxiao DU;Li TIAN;Man ZHANG;Hongmin ZHOU;Zhonghua Klaus CHEN;Sheng CHANG-Institute of Organ Transplantation,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China;Key Laboratory of Organ Transplantation,Ministry of Education,NHC Key Laboratory of Organ Transplantation,Key Laboratory of Organ Transplantation,Chinese Academy of Medical Sciences,Wuhan 430030,China;Henan Key Laboratory of Digestive Organ Transplantation,Open and Key Laboratory of Hepatobiliary&Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities,Zhengzhou Key Laboratory of Hepatobiliary&Pancreatic Diseases and Organ Transplantation,Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China;Department of Cardiothoracic and Vascular Surgery,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China
Regulation of nitrogen starvation responses by the alarmone(p)ppGpp in rice
Hanwen Li;Jinqiang Nian;Shuang Fang;Meng Guo;Xiahe Huang;Fengxia Zhang;Qing Wang;Jian Zhang;Jiaoteng Bai;Guojun Dong;Peiyong Xin;Xianzhi Xie;Fan Chen;Guodong Wang;Yingchun Wang;Qian Qian;Jianru Zuo;Jinfang Chu;Xiaohui Ma-State Key Laboratory of Plant Genomics,National Center for Plant Gene Research(Beijing),Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China;College of Advanced Agricultural Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;State Key Laboratory of Molecular Developmental Biology,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China;Innovation Academy for Seed Design,Chinese Academy of Sciences,Beijing 100101,China;State Key Laboratory of Rice Biology,China National Rice Research Institute,Chinese Academy of Agricultural Sciences,Hangzhou,Zhejiang 310006,China;Institute of Wetland Agriculture and Ecology,Shandong Academy of Agricultural Sciences,Jinan,Shandong 250100,China;Hainan Yazhou Bay Laboratory,Sanya,Hainan 572025,China;CAS Center for Excellence in Molecular Plant Sciences,Chinese Academy of Sciences,Beijing 100101,China
Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function
Xiang Xu;Guangjin Ding;Caizhi Liu;Yuhan Ding;Xiaoxin Chen;Xiaoli Huang;Chen-Song Zhang;Shanxin Lu;Yunpeng Zhang;Yuanyong Huang;Zhaosu Chen;Wei Wei;Lujian Liao;Shu-Hai Lin;Jingya Li;Wei Liu;Jiwen Li;Sheng-Cai Lin;Xinran Ma;Jiemin Wong-Shanghai Key Laboratory of Regulatory Biology,Institute of Biomedical Sciences and School of Life Sciences,East China Normal University,Shanghai,China;Zhongshan-Xuhui Hospital,Fudan University and Shanghai Key Laboratory of Medical Epigenetics,the International Co-laboratory of Medical Epigenetics and Metabolism,Ministry of Science and Technology,Institutes of Biomedical Sciences,Fudan University,Shanghai,China;Department of Biochemistry and Department of Cardiology of the Second Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou,Zhejiang,China;State Key Laboratory of Cellular Stress Biology,Innovation Center for Cell Signaling Network,School of Life Sciences,Xiamen University,4221 South Xiang'an Road,Xiamen,Fujian,China;State Key Laboratory of Drug Research,Shanghai Institute of Materia Medica,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Shanghai,China;Department of Biochemistry and Molecular Biology,Program in Molecular and Cell Biology,Zhejiang University School of Medicine,Hangzhou,Zhejiang,China;Joint Center for Translational Medicine,Fengxian District Central Hospital,6600 Nanfeng Road,Shanghai,China
Dynamic nucleosome organization after fertilization reveals regulatory factors for mouse zygotic genome activation
Chenfei Wang;Chuan Chen;Xiaoyu Liu;Chong Li;Qiu Wu;Xiaolan Chen;Lingyue Yang;Xiaochen Kou;Yanhong Zhao;Hong Wang;Yawei Gao;Yong Zhang;Shaorong Gao-Institute for Regenerative Medicine,Shanghai East Hospital,Shanghai Key Laboratory of Signaling and Disease Research,Frontier Science Center for Stem Cell Research,School of Life Sciences and Technology,Tongji University,Shanghai,China;Department of Urology,Tongji Hospital,Frontier Science Center for Stem Cells,School of Life Science and Technology,Tongji University,Shanghai,China;Women's Hospital,Zhejiang University School of Medicine,Hangzhou,Zhejiang,China;Shanghai Institute of Stem Cell Research and Clinical Translation,Shanghai,China;Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital,Shanghai Key Laboratory of Signaling and Disease Research,Frontier Science Center for Stem Cell Research,School of Life Sciences and Technology,Tongji University,Shanghai,China
The genome of Hibiscus hamabo reveals its adaptation to saline and waterlogged habitat
Zhiquan Wang;Jia-Yu Xue;Shuai-Ya Hu;Fengjiao Zhang;Ranran Yu;Dijun Chen;Yves Van de Peer;Jiafu Jiang;Aiping Song;Longjie Ni;Jianfeng Hua;Zhiguo Lu;Chaoguang Yu;Yunlong Yin;Chunsun Gu-Institute of Botany,Jiangsu Province and Chinese Academy of Sciences,Nanjing,210014,China;College of Horticulture,Academy for Advanced Interdisciplinary Studies,Nanjing Agricultural University,Nanjing 210095,China;State Key Laboratory of Pharmaceutical Biotechnology,School of Life Sciences,Nanjing University,Nanjing 210023,China;Department of Plant Biotechnology and Bioinformatics,Ghent University,VIB-UGent Center for Plant Systems Biology,B-9052 Ghent,Belgium;Department of Biochemistry,Genetics and Microbiology,University of Pretoria,Pretoria 0028,South Africa;College of Horticulture,Nanjing Agricultural University,Nanjing 210095,China;College of Forest Sciences,Nanjing Forestry University,Nanjing,210037,China;Jiangsu Key Laboratory for the Research and Utilization of Plant Resources,Jiangsu Utilization of Agricultural Germplasm,Nanjing,210014,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。