首站-论文投稿智能助手
典型文献
Biomaterial and tissue-engineering strategies for the treatment of brain neurodegeneration
文献摘要:
The incidence of neurodegenerative diseases is increasing due to changing age demographics and the incidence of sports-related traumatic brain injury is tending to increase over time. Currently approved medicines for neurodegenerative diseases only temporarily reduce the symptoms but cannot cure or delay disease progression. Cell transplantation strategies offer an alternative approach to facilitating central nervous system repair, but efficacy is limited by low in vivo survival rates of cells that are injected in suspension. Transplanting cells that are attached to or encapsulated within a suitable biomaterial construct has the advantage of enhancing cell survival in vivo. A variety of biomaterials have been used to make constructs in different types that included nanoparticles, nanotubes, microspheres, microscale fibrous scaffolds, as well as scaffolds made of gels and in the form of micro-columns. Among these, Tween 80-methoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid) nanoparticles loaded with rhynchophylline had higher transport across a blood-brain barrier model and decreased cell death in an in vitro model of Alzheimer's disease than rhynchophylline or untreated nanoparticles with rhynchophylline. In an in vitro model of Parkinson's disease, trans-activating transcriptor bioconjugated with zwitterionic polymer poly(2-methacryoyloxyethyl phosphorylcholine) and protein-based nanoparticles loaded with non-Fe hemin had a similar protective ability as free non-Fe hemin. A positive effect on neuron survival in several in vivo models of Parkinson's disease was associated with the use of biomaterial constructs such as trans-activating transcriptor bioconjugated with zwitterionic polymer poly(2-methacryoyloxyethyl phosphorylcholine) and protein-based nanoparticles loaded with non-Fe hemin, carbon nanotubes with olfactory bulb stem cells, poly(lactic-co-glycolic acid) microspheres with attached DI-MIAMI cells, ventral midbrain neurons mixed with short fibers of poly-(L-lactic acid) scaffolds and reacted with xyloglucan with/ without glial-derived neurotrophic factor, ventral midbrain neurons mixed with Fmoc-DIKVAV hydrogel with/without glial-derived neurotrophic factor. Further studies with in vivo models of Alzheimer's disease and Parkinson's disease are warranted especially using transplantation of cells in agarose micro-columns with an inner lumen filled with an appropriate extracellular matrix material.
文献关键词:
作者姓名:
Bridget Martinez;Philip V.Peplow
作者机构:
Department of Medicine,St.Georges University School of Medicine,Grenada;Department of Anatomy,University of Otago,Dunedin,New Zealand
引用格式:
[1]Bridget Martinez;Philip V.Peplow-.Biomaterial and tissue-engineering strategies for the treatment of brain neurodegeneration)[J].中国神经再生研究(英文版),2022(10):2108-2116
A类:
Transplanting,rhynchophylline,transcriptor,bioconjugated,methacryoyloxyethyl,phosphorylcholine,MIAMI,DIKVAV
B类:
Biomaterial,tissue,engineering,strategies,treatment,neurodegeneration,incidence,neurodegenerative,diseases,increasing,due,changing,demographics,sports,related,traumatic,injury,tending,increase,over,Currently,approved,medicines,only,temporarily,reduce,symptoms,but,cannot,cure,delay,progression,Cell,transplantation,offer,alternative,approach,facilitating,central,nervous,system,repair,efficacy,limited,by,low,vivo,survival,rates,cells,that,are,injected,suspension,attached,encapsulated,within,suitable,has,advantage,enhancing,variety,biomaterials,have,been,used,make,constructs,different,types,included,nanoparticles,nanotubes,microspheres,microscale,fibrous,scaffolds,well,made,gels,form,columns,Among,these,Tween,methoxy,ethylene,lactic,glycolic,acid,loaded,had,higher,transport,across,blood,barrier,decreased,death,vitro,Alzheimer,than,untreated,In,Parkinson,activating,zwitterionic,polymer,protein,hemin,similar,protective,ability,free,positive,effect,several,models,was,associated,such,carbon,olfactory,bulb,ventral,midbrain,neurons,mixed,short,fibers,reacted,xyloglucan,without,glial,derived,neurotrophic,Fmoc,hydrogel,Further,studies,warranted,especially,using,agarose,inner,lumen,filled,appropriate,extracellular,matrix
AB值:
0.483417
相似文献
Detection and surveillance of circulating tumor cells in osteosarcoma for predicting therapy response and prognosis
Haoran Mu;Dongqing Zuo;Jie Chen;Zhigang Liu;Zhuo Wang;Liu Yang;Qihui Shi;Yingqi Hua-Shanghai Bone Tumor Institute and Department of Orthopedics,Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200080,China;Key Laboratory of Systems Biomedicine(Ministry of Education),Shanghai Center for Systems Biomedicine,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Key Laboratory of Medical Epigenetics and the International Co-laboratory of Medical Epigenetics and Metabolism(MOST),Institutes of Biomedical Sciences,Fudan University,Shanghai 200032,China;Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC)and Institute of Fudan-Minhang Academic Health System,Minhang Hospital,Fudan University,Shanghai 201199,China;Shanghai Engineering Research Center of Biomedical Analysis Reagents,Shanghai 201203,China
Autophagy, not apoptosis, plays a role in lumen formation of eccrine gland organoids
Du Lijie;Zhang Lei;Zhao Junhong;Chen Zixiu;Liu Xiang;Cao Manxiu;You Lei;Zhang Yonghong;Fu Xiaobing;Li Haihong-Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China;Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China;Mental Health Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China;School of Basic Medicine, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei 442000, China;Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100048, China
CHCHD2 maintains mitochondrial contact site and cristae organizing system stability and protects against mitochondrial dysfunction in an experimental model of Parkinson’s disease
Lu Lin;Mao Hengxu;Zhou Miaomiao;Lin Yuwan;Dai Wei;Qiu Jiewen;Xiao Yousheng;Mo Mingshu;Zhu Xiaoqin;Wu Zhuohua;Pei Zhong;Guo Wenyuan;Xu Pingyi;Chen Xiang-Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China;Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China;School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China;Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
Exosomal miR-485-3p derived from pancreatic ductal epithelial cells inhibits pancreatic cancer metastasis through targeting PAK1
Li Mingzhe;Zhou Jiaxin;Zhang Zhengkui;Li Jisong;Wang Feng;Ma Ling;Tian Xiaodong;Mao Zebin;Yang Yinmo-Department of General Surgery, Peking University First Hospital, Beijing 100034, China;Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, China;Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072, China;Department of Surgical Oncology, Peking University Ninth School of Clinical Medicine (Beijing Shijitan Hospital, Capital Medical University), Beijing 100038, China;Department of Medical Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
Treatment of autosomal recessive hearing loss via in vivo CRISPR/Cas9-mediated optimized homology-directed repair in mice
Xi Gu;Xinde Hu;Daqi Wang;Zhijiao Xu;Fang Wang;Di Li;Geng-lin Li;Hui Yang;Huawei Li;Erwei Zuo;Yilai Shu-ENT institute and Department of Otorhinolaryngology,Eye & ENT Hospital,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Fudan University,Shanghai,China;Institutes of Biomedical Sciences,Fudan University,Shanghai,China;Department of Otolaryngology,the First Affiliated Hospital of Fujian Medical University,Fuzhou,China;NHC Key Laboratory of Hearing Medicine(Fudan University),Shanghai,China;Institute of Neuroscience,State Key Laboratory of Neuroscience,Key Laboratory of Primate Neurobiology,CAS Center for Excellence in Brain Science and Intelligence Technology,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences,Shanghai,China;State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources,Guangxi University,Nanning,China;Shenzhen Branch,Guangdong Laboratory for Lingnan Modern Agriculture,Genome Analysis Laboratory of the Ministry of Agriculture,Agricultural Genomics Institute at Shenzhen,Chinese Academy of Agricultural Sciences,Shenzhen,China;The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science,Fudan University,Shanghai,China
Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo
Fanxiang Yin;Ran Zhao;Dhilli Rao Gorja;Xiaorong Fu;Ning Lu;Hai Huang;Beibei Xu;Hanyong Chen;Jung-Hyun Shim;Kangdong Liu;Zhi Li;Kyle Vaughn Laster;Zigang Dong;Mee-Hyun Lee-Department of Pathophysiology,School of Basic Medical Sciences,Zhengzhou University,Zhengzhou 450001,China;China-US(Henan)Hormel Cancer Institute,Zhengzhou 450008,China;Translational Medical Center,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China;The Hormel Institute,University of Minnesota,Austin,MN 55912,USA;Department of Biomedicine,Health&Life Convergencen Science,BK21 Four,College of Pharmacy,Mokpo National University,Jeonnam 58554,Republic of Korea;The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention,Zhengzhou 450001,China;Department of General Surgery,the Affiliated Tumor Hospital of Zhengzhou University,Zhengzhou 450008,China;College of Korean Medicine,Dongshin University,Naju 58245,Republic of Korea
Pharmacodynamic,pharmacokinetic,and phase 1a study of bisthianostat,a novel histone deacetylase inhibitor,for the treatment of relapsed or refractory multiple myeloma
Yu-bo Zhou;Yang-ming Zhang;Hong-hui Huang;Li-jing Shen;Xiao-feng Han;Xiao-bei Hu;Song-da Yu;An-hui Gao;Li Sheng;Ming-bo Su;Xiao-li Wei;Yue Zhang;Yi-fan Zhang;Zhi-wei Gao;Xiao-yan Chen;Fa-jun Nan;Jia Li;Jian Hou-National Center for New Drug Screening,State Key Laboratory of Drug Research,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai 201203,China;University of Chinese Academy of Sciences,Beijing 100049,China;Yantai Key Laboratory of Nanomedicine&Advanced Preparations,Yantai Institute of Materia Medica,Yantai 264000,China;Department of Hematology,Renji Hospital,Shanghai Jiaotong University School of Medicine,Shanghai 200127,China;Shanghai Center for Drug Metabolism and Pharmacokinetics Research,Shanghai 201203,China
Sulforaphane ameliorates non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1 signaling pathway
Yi-kuan Wu;Zheng-nan Ren;Sheng-long Zhu;Yun-zhou Wu;Gang Wang;Hao Zhang;Wei Chen;Zhao He;Xian-long Ye;Qi-xiao Zhai-State Key Laboratory of Food Science and Technology,Jiangnan University,Wuxi 214122,China;School of Food Science and Technology,Jiangnan University,Wuxi 214122,China;School of Medicine,Jiangnan University,Wuxi 214122,China;College of Life Science,Northeast Agricultural University,Harbin 150038,China;National Engineering Research Center for Functional Food,Jiangnan University,Wuxi 214122,China;Shandong Key Laboratory of Endocrinology and Lipid Metabolism,Jinan 250021,China;School of Medicine,Shandong University,Jinan 250012,China;Ganjiang Chinese Medicine Innovation Center,Nanchang 330000,China
Pharmacological characterization of a novel metal-based proteasome inhibitor Na-AuPT for cancer treatment
Da-cai Xu;Li Yang;Pei-quan Zhang;Ding Yan;Qian Xue;Qing-tian Huang;Xiao-fen Li;Ya-li Hao;Dao-lin Tang;Q.Ping Dou;Xin Chen;Jin-bao Liu-Affliated Cancer Hospital&Institute of Guangzhou Medical University,Guangzhou 510095,China;Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation,School of Basic Medical Sciences,Guangzhou Medical University,Guangzhou 511436,China;The Department of Physiology,School of Basic Medical Sciences,Guizhou Medical University,Guiyang 550003,China;Department of Surgery,UT Southwestern Medical Center,Dallas,TX 75390,USA;Barbara Ann Karmanos Cancer Institute and Departments of Oncology,Pharmacology&Pathology,School of Medicine,Wayne State University,Detroit,MI 48201,USA
Corynoxine B derivative CB6 prevents Parkinsonian toxicity in mice by inducing PIK3C3 complex-dependent autophagy
Zhou Zhu;Liang-feng Liu;Cheng-fu Su;Jia Liu;Benjamin Chun-Kit Tong;Ashok lyaswamy;Senthilkumar Krishnamoorthi;Sravan Gopalkrishnashetty Sreenivasmurthy;Xin-jie Guan;Yu-xuan Kan;Wen-jian Xie;Chen-liang Zhao;King-ho Cheung;Jia-hong Lu;Jie-qiong Tan;Hong-jie Zhang;Ju-xian Song;Min Li-Mr.&Mrs.Ko Chi-Ming Centre for Parkinson's Disease Research,School of Chinese Medicine,Hong Kong Baptist University,Hong Kong,SAR,China;School of Chinese Medicine,Hong Kong Baptist University,Hong Kong,SAR,China;institute for Research and Continuing Education,Hong Kong Baptist University,Shenzhen 518057,China;Limin Pharmaceutical Factory,Livzon Group Limited,Shaoguan 512028,China;State Key Laboratory of Quality Research in Chinese Medicine,Institute of Chinese Medical Sciences,University of Macau,Macau,SAR,China;Center for Medical Genetics and Hunan Key Laboratory of Animal Model for Human Diseases,School of Life Sciences,Central South University,Changsha 410078,China;Medical College of Acupuncture-Moxibustion and Rehabilitation,Guangzhou University of Chinese Medicine,Guangzhou 510006,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。