首站-论文投稿智能助手
典型文献
A mini review:Constructing perovskite p-n homojunction solar cells
文献摘要:
Organic metal halide perovskite materials have excellent photoelectric properties,and the power conver-sion efficiency(PCE)of the perovskite solar cells(PSCs)has increased from 3.8%to more than 25%.In the development of PSCs,innovative architectures were being proposed constantly.However,the use of the electron transport layer(ETL)and hole transport layer(HTL)increases manufacturing costs and process complexity.Perovskite material has ambipolar charge transport characteristics,so it could functionalize as both the optical absorption layer and carrier transport layer(CTL).In this review,we analyzed the p/n-type perovskite materials,perovskite p-n homojunction solar cells,and carrier transport layers-free(CTLs-free)devices.Finally,we propose some innovative device architectures.We hope that this mini re-view could pave way for the simplification of the architectures,promote the preparation of the low-cost and high-efficiency devices,and accelerate the commercialization of the PSCs.
文献关键词:
作者姓名:
Yanan Sun;Wei Chen;Zhengyi Sun
作者机构:
Key Laboratory of Flexible Electronics(KLOFE),Institute of Advanced Materials(IAM),Nanjing Tech University,Nanjing 211816,China
引用格式:
[1]Yanan Sun;Wei Chen;Zhengyi Sun-.A mini review:Constructing perovskite p-n homojunction solar cells)[J].中国化学快报(英文版),2022(04):1772-1778
A类:
B类:
mini,review,Constructing,perovskite,homojunction,solar,cells,Organic,metal,halide,materials,have,excellent,photoelectric,properties,power,conver,sion,efficiency,PCE,PSCs,has,increased,from,more,than,In,development,innovative,architectures,were,being,proposed,constantly,However,use,electron,transport,ETL,hole,HTL,increases,manufacturing,costs,process,complexity,Perovskite,ambipolar,charge,characteristics,could,functionalize,both,optical,absorption,carrier,this,analyzed,type,layers,free,CTLs,devices,Finally,some,We,hope,that,pave,way,simplification,promote,preparation,low,high,accelerate,commercialization
AB值:
0.587156
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization
Xia Cai;Fengcai Liu;Anran Yu;Jiajun Qin;Mohammad Hatamvand;Irfan Ahmed;Jiayan Luo;Yiming Zhang;Hao Zhang;Yiqiang Zhan-School of Information Science and Technology,Fudan University,Shanghai 200433,China;College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China;Center of Micro-Nano System,Fudan University,Shanghai 200433,China;Department of Physics,Chemistry and Biology,Link?ping University,Link?ping SE-58183,Sweden;Key Laboratory of Micro and Nano Photonic Structures and Department of Optical Science and Engineering,Fudan University,Shanghai 200433,China;Yiwu Research Institute of Fudan University,Chengbei Road,Yiwu City,Zhejiang 322000,China
Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization
Xia Cai;Fengcai Liu;Anran Yu;Jiajun Qin;Mohammad Hatamvand;Irfan Ahmed;Jiayan Luo;Yiming Zhang;Hao Zhang;Yiqiang Zhan-School of Information Science and Technology,Fudan University,Shanghai 200433,China;College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China;Center of Micro-Nano System,Fudan University,Shanghai 200433,China;Department of Physics,Chemistry and Biology,Link?ping University,Link?ping SE-58183,Sweden;Key Laboratory of Micro and Nano Photonic Structures and Department of Optical Science and Engineering,Fudan University,Shanghai 200433,China;Yiwu Research Institute of Fudan University,Chengbei Road,Yiwu City,Zhejiang 322000,China
Manipulate energy transport via fluorinated spacers towards record-efficiency 2D Dion-Jacobson CsPbI3 solar cells
Yutian Lei;Zhenhua Li;Haoxu Wang;Qian Wang;Guoqiang Peng;Youkui Xu;Haihua Zhang;Gang Wang;Liming Ding;Zhiwen Jin-School of Physical Science and Technology&Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China;School of Physical Science and Technology&Lanzhou Center for Theoretical Physics&Key Laboratory of Theoretical Physics of Gansu Province,Lanzhou University,Lanzhou 730000,China;Delft University of Technology,Photovoltaic Materials and Devices Group,Delft 2628CD,the Netherlands;Institute of Molecular Plus,Tianjin University,Tianjin 300072,China;Department of Microelectronic Science and Engineering,School of Physical Science and Technology,Ningbo University,Ningbo 315211,China;Key Laboratory of Nanosystem and Hierarchical Fabrication,National Center for Nanoscience and Technology,Beijing 100190,China
Self-assembled donor-acceptor hole contacts for inverted perovskite solar cells with an efficiency approaching 22%:The impact of anchoring groups
Qiaogan Liao;Yang Wang;Zilong Zhang;Kun Yang;Yongqiang Shi;Kui Feng;Bolin Li;Jiachen Huang;Peng Gao;Xugang Guo-Department of Materials Science and Engineering,Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices,Southern University of Science and Technology(SUSTech),Shenzhen 518055,Guangdong,China;College of Materials,Fujian Key Laboratory of Advanced Materials,Xiamen University,Xiamen 361005,Fujian,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Provincial Key Laboratory of Nanomaterials,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,Fujian,China
Surface passivation and hole extraction:Bifunctional interfacial engineering toward high-performance all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 12%
Qi Liu;Junming Qiu;Xianchang Yan;Yuemeng Fei;Yue Qiang;Qingyan Chang;Yi Wei;Xiaoliang Zhang;Wenming Tian;Shengye Jin;Ze Yu;Licheng Sun-State Key Laboratory of Fine Chemicals,Dalian University of Technology(DUT),Dalian 116024,Liaoning,China;School of Materials Science and Engineering,Beihang University,Beijing 100191,China;State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Liaoning,China;Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),Dalian University of Technology(DUT),Dalian 116024,Liaoning,China;Center of Artificial Photosynthesis for Solar Fuels,School of Science,Westlake University,Hangzhou 310024,Zhejiang,China;Department of Chemistry,School of Engineering Sciences in Chemistry,Biotechnology and Health,KTH Royal Institute of Technology,10044 Stockholm,Sweden
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。