典型文献
Generalized Maximum Principles and Stochastic Completeness for Pseudo-Hermitian Manifolds
文献摘要:
In this paper,the authors establish a generalized maximum principle for pseudo-Hermitian manifolds.As corollaries,Omori-Yau type maximum principles for pseudo-Hermitian manifolds are deduced.Moreover,they prove that the stochastic completeness for the heat semigroup generated by the sub-Laplacian is equivalent to the validity of a weak form of the generalized maximum principles.Finally,they give some applications of these generalized maximum principles.
文献关键词:
中图分类号:
作者姓名:
Yuxin DONG;Weike YU
作者机构:
School of Mathematical Sciences,Fudan University,Shanghai 200433,China;School of Mathematics and Statistics,Nanjing University of Science and Tech-nology,Nanjing 210094,China
文献出处:
引用格式:
[1]Yuxin DONG;Weike YU-.Generalized Maximum Principles and Stochastic Completeness for Pseudo-Hermitian Manifolds)[J].数学年刊B辑(英文版),2022(06):949-976
A类:
Completeness,corollaries
B类:
Generalized,Maximum,Principles,Stochastic,Pseudo,Hermitian,Manifolds,In,this,paper,authors,establish,generalized,maximum,pseudo,manifolds,Omori,Yau,type,principles,are,deduced,Moreover,they,prove,that,stochastic,completeness,heat,semigroup,generated,by,sub,Laplacian,equivalent,validity,weak,form,Finally,give,some,applications,these
AB值:
0.644079
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。