首站-论文投稿智能助手
典型文献
Pluriclosed Manifolds with Constant Holomorphic Sectional Curvature
文献摘要:
A long-standing conjecture in complex geometry says that a compact Hermitian manifold with constant holomorphic sectional curvature must be K?hler when the constant is non-zero and must be Chern flat when the constant is zero.The conjecture is known in complex dimension 2 by the work of Balas-Gauduchon in 1985(when the constant is zero or negative)and by Apostolov-Davidov-Muskarov in 1996(when the constant is positive).For higher dimensions,the conjecture is still largely unknown.In this article,we restrict ourselves to pluriclosed manifolds,and confirm the conjecture for the special case of Strominger K?hler-like manifolds,namely,for Hermitian manifolds whose Strominger connection(also known as Bismut connection)obeys all the K?hler symmetries.
文献关键词:
作者姓名:
Pei Pei RAO;Fang Yang ZHENG
作者机构:
School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,P.R.China
引用格式:
[1]Pei Pei RAO;Fang Yang ZHENG-.Pluriclosed Manifolds with Constant Holomorphic Sectional Curvature)[J].数学学报(英文版),2022(06):1094-1104
A类:
Pluriclosed,Holomorphic,Balas,Gauduchon,Apostolov,Davidov,Muskarov,pluriclosed,Strominger,Bismut
B类:
Manifolds,Constant,Sectional,Curvature,long,standing,conjecture,complex,geometry,says,that,compact,Hermitian,constant,holomorphic,sectional,curvature,must,hler,when,zero,Chern,flat,by,work,negative,positive,For,higher,dimensions,still,largely,unknown,In,this,article,we,restrict,ourselves,manifolds,confirm,special,case,like,namely,whose,connection,also,obeys,all,symmetries
AB值:
0.442687
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。