首站-论文投稿智能助手
典型文献
A Criterion of Nonparabolicity by the Ricci Curvature
文献摘要:
A complete manifold is said to be nonparabolic if it does admit a positive Green's function.To find a sharp geometric criterion for the parabolicity/nonparbolicity is an attractive question inside the function theory on Riemannian manifolds.This pa-per devotes to proving a criterion for nonparabolicity of a complete manifold weakened by the Ricci curvature.For this purpose,we shall apply the new Laplacian comparison theorem established by the first author to show the existence of a non-constant bounded subharmonic function.
文献关键词:
作者姓名:
Qing DING;Xiayu DONG
作者机构:
School of Mathematical Sciences,Fudan University,Shanghai 200433,China
引用格式:
[1]Qing DING;Xiayu DONG-.A Criterion of Nonparabolicity by the Ricci Curvature)[J].数学年刊B辑(英文版),2022(05):739-748
A类:
Nonparabolicity,nonparabolic,parabolicity,nonparbolicity,devotes,nonparabolicity
B类:
Criterion,by,Ricci,Curvature,complete,said,be,does,admit,positive,Green,function,To,find,sharp,geometric,criterion,attractive,question,inside,theory,Riemannian,manifolds,This,per,proving,weakened,curvature,For,this,purpose,shall,apply,new,Laplacian,comparison,theorem,established,first,author,show,existence,constant,bounded,subharmonic
AB值:
0.582128
相似文献
Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate α-RuCl3
Kejing Ran;Jinghui Wang;Song Bao;Zhengwei Cai;Yanyan Shangguan;Zhen Ma;Wei Wang;Zhao-Yang Dong;P.(C)ermák;A.Schneidewind;Siqin Meng;Zhilun Lu;Shun-Li Yu;Jian-Xin Li;Jinsheng Wen-School of Physical Science and Technology,and ShanghaiTech Laboratory for Topological Physics,ShanghaiTech University,Shanghai 200031,China;National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China;Institute for Advanced Materials,Hubei Normal University,Huangshi 435002,China;School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Department of Applied Physics,Nanjing University of Science and Technology,Nanjing 210094,China;Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ),Forschungszentrum Jülich GmbH,Lichtenbergstr.1,85748 Garching,Germany;Charles University,Faculty of Mathematics and Physics,Department of Condensed Matter Physics,Ke Karlovu 5,12116,Praha,Czech Republic;Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,Hahn-Meitner-Platz 1D-14109,Berlin,Germany;China Institute of Atomic Energy (CIAE),Beijing 102413,China;The Henry Royce Institute and Department of Materials Science and Engineering,The University of Sheffield,Sir Robert Hadfield Building,Sheffield,S13JD,United Kingdom;Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。