典型文献
A Criterion of Nonparabolicity by the Ricci Curvature
文献摘要:
A complete manifold is said to be nonparabolic if it does admit a positive Green's function.To find a sharp geometric criterion for the parabolicity/nonparbolicity is an attractive question inside the function theory on Riemannian manifolds.This pa-per devotes to proving a criterion for nonparabolicity of a complete manifold weakened by the Ricci curvature.For this purpose,we shall apply the new Laplacian comparison theorem established by the first author to show the existence of a non-constant bounded subharmonic function.
文献关键词:
中图分类号:
作者姓名:
Qing DING;Xiayu DONG
作者机构:
School of Mathematical Sciences,Fudan University,Shanghai 200433,China
文献出处:
引用格式:
[1]Qing DING;Xiayu DONG-.A Criterion of Nonparabolicity by the Ricci Curvature)[J].数学年刊B辑(英文版),2022(05):739-748
A类:
Nonparabolicity,nonparabolic,parabolicity,nonparbolicity,devotes,nonparabolicity
B类:
Criterion,by,Ricci,Curvature,complete,said,be,does,admit,positive,Green,function,To,find,sharp,geometric,criterion,attractive,question,inside,theory,Riemannian,manifolds,This,per,proving,weakened,curvature,For,this,purpose,shall,apply,new,Laplacian,comparison,theorem,established,first,author,show,existence,constant,bounded,subharmonic
AB值:
0.582128
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。