首站-论文投稿智能助手
典型文献
Characteristics of sea ice kinematics from the marginal ice zone to the packed ice zone observed by buoys deployed during the 9th Chinese Arctic Expedition
文献摘要:
Sea ice growth and consolidation play a significant role in heat and momentum exchange between the atmosphere and the ocean. However, few in situ observations of sea ice kinematics have been reported owing to difficulties of deployment of buoys in the marginal ice zone (MIZ). To investigate the characteristics of sea ice kinematics from MIZ to packed ice zone (PIZ), eight drifting buoys designed by Taiyuan University of Technology were deployed in the open water at the ice edge of the Canadian Basin. Sea ice near the buoy constantly increased as the buoy drifted, and the kinematics of the buoy changed as the buoy was frozen into the ice. This process can be determined using sea ice concentration, sea skin temperature, and drift speed of buoy together. Sea ice concentration data showed that buoys entered the PIZ in mid-October as the ice grew and consolidated around the buoys, with high amplitude, high frequency buoy motions almost ceasing. Our results confirmed that good correlation coefficient in monthly scale between buoy drift and the wind only happened in the ice zone. The correlation coefficient between buoys and wind was below 0.3 while the buoys were in open water. As buoys entered the ice zone, the buoy speed was normally distributed at wind speeds above 6 m/s. The buoy drifted mainly to the right of the wind within 45° at wind speeds above 8 m/s. During further consolidation of the ice in MIZ, the direct forcing on the ice through winds will be lessened. The correlation coefficient value increased to 0.9 in November, and gradually decreased to 0.7 in April.
文献关键词:
作者姓名:
Xiaomin Chang;Longchun Ye;Guangyu Zuo;Jingyue Li;Keyu Wei;Yinke Dou
作者机构:
College of Water Resources Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China;College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China
引用格式:
[1]Xiaomin Chang;Longchun Ye;Guangyu Zuo;Jingyue Li;Keyu Wei;Yinke Dou-.Characteristics of sea ice kinematics from the marginal ice zone to the packed ice zone observed by buoys deployed during the 9th Chinese Arctic Expedition)[J].海洋学报(英文版),2022(07):113-127
A类:
MIZ,PIZ,drifted,ceasing
B类:
Characteristics,sea,ice,kinematics,from,marginal,zone,packed,observed,by,buoys,deployed,during,9th,Chinese,Arctic,Expedition,Sea,growth,consolidation,play,significant,role,heat,momentum,exchange,between,atmosphere,ocean,However,few,situ,observations,have,been,reported,owing,difficulties,deployment,To,investigate,characteristics,eight,drifting,designed,Taiyuan,University,Technology,were,open,water,edge,Canadian,Basin,near,constantly,increased,changed,was,frozen,into,This,process,determined,using,concentration,skin,temperature,together,data,showed,that,entered,mid,October,grew,consolidated,around,high,amplitude,frequency,motions,almost,Our,results,confirmed,good,correlation,coefficient,monthly,scale,only,happened,below,while,normally,distributed,speeds,above,mainly,right,within,During,further,direct,forcing,through,winds,will,lessened,value,November,gradually,decreased,April
AB值:
0.435251
相似文献
Geographical inhomogeneity and temporal variability of mixing property and driving mechanism in the Arctic Ocean
Jia YOU;Zhenhua XU;Robin ROBERTSON;Qun LI;Baoshu YIN-CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China;Pilot National Laboratory for Marine Science and Technology(Qingdao),Qingdao 266237,China;Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;CAS Engineering Laboratory for Marine Ranching,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China;China-Asean College of Marine Science,Xiamen University Malaysia,Sepang 43900,Malaysia;MNR Key Laboratory for Polar Science,Polar Research Institute of China,Shanghai 200120,China
The Predictability of Ocean Environments that Contributed to the 2020/21 Extreme Cold Events in China: 2020/21 La Ni?a and 2020 Arctic Sea Ice Loss
Fei ZHENG;Ji-Ping LIU;Xiang-Hui FANG;Mi-Rong SONG;Chao-Yuan YANG;Yuan YUAN;Ke-Xin LI;Jiang ZHU-International Center for Climate and Environment Science(ICCES),Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science& Technology,Nanjing 210044,China;Department of Atmospheric and Environmental Sciences University at Albany,State University of New York,Albany,NY 12222,USA;Department of Atmospheric and Oceanic Sciences& Institute of Atmospheric Sciences,Fudan University,Shanghai 200438,China;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;School of Atmospheric Sciences,Sun Yat-sen University,Zhuhai 519082,China;National Climate Center,Beijing 100081,China;University of Chinese Academy of Sciences,Beijing 100049,China9Beijing Municipal Climate Center,Beijing 100089,China
Links between winter dust over the Tibetan Plateau and preceding autumn sea ice variability in the Barents and Kara Seas
Chao XU;Jie-Hua MA;Jian-Qi SUN;Chao YOU;Yao-Ming MA;Hui-Jun WANG;Tao WANG-Climate Change Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;CMA Earth System Modeling and Prediction Centre(CEMC),China Meteorological Administration,Beijing 100081,China;Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Key Laboratory of Meteorological Disaster(KLME),Ministry of Education&Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD),Nanjing University of Information Science&Technology,Nanjing 210044,China;College of Environment and Ecology,Chongqing University,Chongqing 400044,China;Land-Atmosphere Interaction and Its Climatic Effects Group,State Key Laboratory of Tibetan Plateau Earth System and Resources Environment(TPESRE),Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China;College of Earth and Planetary Sciences,University of Chinese Academy of Science,Beijing 100049,China;Center for Pan-third Pole Environment,Lanzhou University,Lanzhou 730000,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。