典型文献
基于自适应采样的不平衡分类方法
文献摘要:
针对传统重采样方法大多使用固定采样策略,无法根据模型的优化需求改变采样策略的问题,提出一种基于自适应采样的不平衡分类方法(ASIC).该方法根据分类模型在验证集上的表现动态调整训练集上不同类别样本的采样概率,使不同类别的采样概率由当前分类模型的需求动态决定;同时,该方法对少数类给予额外的关注,在其余条件相同的情况下为少数类赋予更大的采样概率,以弥补少数类本身样本数量不足对分类模型造成的不良影响,从而提高分类模型对少数类的识别能力.实验结果表明,使用ASIC方法训练的分类模型的平均类准确率和召回率的几何平均值均比对比方法更好,且数据分布越不平衡,ASIC方法的优势越明显.
文献关键词:
不平衡分类;自适应采样;召回率
中图分类号:
作者姓名:
陈琼;谢家亮
作者机构:
华南理工大学 计算机科学与工程学院, 广东 广州510006
文献出处:
引用格式:
[1]陈琼;谢家亮-.基于自适应采样的不平衡分类方法)[J].华南理工大学学报(自然科学版),2022(04):26-34,45
A类:
B类:
自适应采样,不平衡分类,分类方法,重采样,采样方法,采样策略,模型的优化,ASIC,分类模型,验证集,整训,训练集,别样,少数类,余条,下为,样本数量,识别能力,方法训练,召回率,几何平均,比方,数据分布
AB值:
0.353112
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。