首站-论文投稿智能助手
典型文献
Performance improvement of ultra-low Pt proton exchange membrane fuel cell by catalyst layer structure optimization
文献摘要:
Reducing the loading of noble Pt-based catalyst is vital for the commercialization of proton exchange membrane fuel cell (PEMFC).However,severe mass transfer polarization loss resulting in fuel cell perfor-mance decline will be encountered in ultra-low Pt PEMFC.In this work,mild oxidized multiwalled carbon nanotubes (mMWCNT) were adopted to construct the catalyst layer,and by varying the loading of carbon nanotubes,the catalyst layer structure was optimized.A high peak power density of 1.23 W·cm 2 for the MEA with mMWCNT was obtained at an ultra-low loading of 120 μg·cm-2 Pt/PtRu (both cathode and anode),which was 44.7% higher than that of MEA without mMWCNT.Better catalyst dispersion,low charge transfer resistance,more porous structure and high hydrophobicity of catalyst layer were ascribed for the reasons of the performance improvement.
文献关键词:
作者姓名:
Jinyan xi;Kang Meng;Ying Li;Meng Wang;Qiang Liao;Zidong Wei;Minhua Shao;Jianchuan Wang
作者机构:
School of Chemistry & Chemical Engineering,Chongqing University,Chongqing 400044,China;School of Energy and Power Engineering,Chongqing University,Chongqing 400044,China;School of Chemistry and Bioengineering HongKong University of Science and Technology,Hong Kong,China
引用格式:
[1]Jinyan xi;Kang Meng;Ying Li;Meng Wang;Qiang Liao;Zidong Wei;Minhua Shao;Jianchuan Wang-.Performance improvement of ultra-low Pt proton exchange membrane fuel cell by catalyst layer structure optimization)[J].中国化学工程学报(英文版),2022(01):473-479
A类:
mMWCNT
B类:
Performance,improvement,ultra,low,proton,exchange,membrane,fuel,cell,by,catalyst,layer,structure,optimization,Reducing,loading,noble,vital,commercialization,PEMFC,However,severe,mass,transfer,polarization,loss,resulting,decline,will,encountered,In,this,work,mild,oxidized,multiwalled,carbon,nanotubes,were,adopted,construct,varying,was,optimized,peak,power,density,MEA,obtained,PtRu,both,cathode,anode,which,higher,than,that,without,Better,dispersion,charge,resistance,more,porous,hydrophobicity,ascribed,reasons,performance
AB值:
0.524218
相似文献
Highly stable N-containing polymer-based Fe/Nx/C electrocatalyst for alkaline anion exchange membrane fuel cell applications
Muhammad Rauf;Jingwen Wang;Stephan Handschuh-Wang;Zhiyou Zhou;Waheed Iqbal;Sayed Ali Khan;Lin Zhuang;Xiangzhong Ren;Yongliang Li;Shigang Sun-College of Chemistry and Environmental Engineering Shenzhen University,Shenzhen,518060,China;State Key Laboratory of Physical Chemistry of Solid Surfaces,Collaborative Innovation Center of Chemistry for Energy Materials,College of Chemistry and Chemical Engineering Xiamen University,Xiamen,361005,China;Environmental Science and Engineering Research Center,Harbin Institute of Technology(Shenzhen),Shenzhen,5180,China;School of Electronic Science and Engineering,Xiamen University,Xiamen,361005,China;College of Chemistry and Molecular Sciences,Hubei Key Lab of Electrochemical Power Sources,Wuhan University,Wuhan,430072,China
Ordered mesoporous carbon spheres assisted Ru nanoclusters/RuO2 with redistribution of charge density for efficient CO2 methanation in a novel H2/CO2 fuel cell
Yan Liu;Tao Zhang;Chao Deng;Shixiu Cao;Xin Dai;Shengwu Guo;Yuanzhen Chen;Qiang Tan;Haiyan Zhu;Sheng Zhang;Yongning Liu-State Key Laboratory for Mechanical Behavior of Materials,Xi'an Jiaotong University,Xi'an 710049,Shaanxi,China;Department of Chemical and Biochemical Engineering,Rutgers,The State University of New Jersey,Piscataway 08854,New Jersey,United States;Chongqing University Key Laboratory of Micro/Nano Materials Engineering and Technology,Chongqing University of Arts and Sciences,Chongqing 402160,China;Institute of Modern Physics,Northwest University,Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi'an 710069,Shaanxi,China;Key Laboratory for Green Chemical Technology of Ministry of Education,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China
Engineering the morphology and electronic structure of atomic cobalt-nitrogen-carbon catalyst with highly accessible active sites for enhanced oxygen reduction
Zhijun Li;Leipeng Leng;Siqi Ji;Mingyang Zhang;Hongxue Liu;Jincheng Gao;Jiangwei Zhang;J.Hugh Horton;Qian Xu;Junfa Zhu-Joint International Research Laboratory of Advanced Chemical Catalytic Materials&Surface Science,College of Chemistry and Chemical Engineering,Northeast Petroleum University,Daqing 163318,Heilongjiang,China;Dalian National Laboratory for Clean Energy&State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Liaoning,China;Department of Chemistry,Queen's University,Kingston,Ontario K7L 3N6,Canada;National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,Anhui,China
In situ induced cation-vacancies in metal sulfides as dynamic electrocatalyst accelerating polysulfides conversion for Li-S battery
Rongrong Li;Hao Sun;Caiyun Chang;Yuan Yao;Xiong Pu;Wenjie Mai-Siyuan Laboratory,Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials,Department of Physics,Jinan University,Guangzhou 510632,Guangdong,China;CAS Center for Excellence in Nanoscience,Beijing Key Laboratory of Micro-Nano Energy and Sensor,Beijing Institute of Nanoenergy and Nanosystems,Chinese Academy of Sciences,Beijing 101400,China;State Key Laboratory of Power Transmission Equipment and System Security and New Technology,School of Electrical Engineering,Chongqing University,Chongqing 400044,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。