首站-论文投稿智能助手
典型文献
Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
文献摘要:
P2-type layered oxides have been considered as promising cathode materials for Na-ion batteries,but the capac-ity decay resulting from the Na+/vacancy ordering and phase transformation limits their future large-scale applica-tions.Herein,the impact of Li-doping in different layers on the structure and electrochemical performance of P2-type Na0.7Ni0.35Mn0.65O2 is investigated.It can be found that Li ions successfully enter both the Na and transition metal layers.The strategy of Li-doping can improve the cycling stability and rate capability of P2-type layered oxides,which promotes the development of high-performance Na-ion batteries.
文献关键词:
作者姓名:
Jianxiang Gao;Kai Sun;Hao Guo;Zhengyao Li;Jianlin Wang;Xiaobai Ma;Xuedong Bai;Dongfeng Chen
作者机构:
China Institute of Atomic Energy,Beijing 102413,China;State Key Laboratory for Surface Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
引用格式:
[1]Jianxiang Gao;Kai Sun;Hao Guo;Zhengyao Li;Jianlin Wang;Xiaobai Ma;Xuedong Bai;Dongfeng Chen-.Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries)[J].中国物理B(英文版),2022(09):173-178
A类:
35Mn0,65O2
B类:
Designing,P2,type,cathode,Li,both,transition,metal,layers,batteries,layered,oxides,have,been,considered,promising,materials,but,capac,decay,resulting,from,Na+,vacancy,ordering,phase,transformation,limits,their,future,large,scale,applica,tions,Herein,impact,doping,different,structure,electrochemical,performance,Na0,7Ni0,investigated,It,found,that,successfully,enter,strategy,improve,cycling,stability,capability,which,promotes,development,high
AB值:
0.542119
相似文献
Construction of cobalt vacancies in cobalt telluride to induce fast ionic/electronic diffusion kinetics for lithium-ion half/full batteries
Lei Hu;Lin Li;Yuyang Zhang;Xiaohong Tan;Hao Yang;Xiaoming Lin;Yexiang Tong-Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application,School of Chemical and Environmental Engineering,Anhui Polytechnic University,Wuhu 241000,China;MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry,The Key Laboratory of Low-Carbon Chemistry&Energy Conservation of Guangdong Province,School of Chemistry,Sun Yat-Sen University,Guangzhou 510275,China;Key Laboratory of Theoretical Chemistry of Environment,Ministry of Education,School of Chemistry,South China Normal University,Guangzhou 510006,China;Guangxi Key Laboratory of Electrochemical Energy Materials,School of Chemistry&Chemical Engineering,Guangxi University,Nanning 530004,China
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques
Guannan Qian;Junyang Wang;Hong Li;Zi-Feng Ma;Piero Pianetta;Linsen Li;Xiqian Yu;Yijin Liu-Stanford Synchrotron Radiation Lightsource,SLAC National Accelerator Laboratory,Menlo Park,CA 94025,USA;Department of Chemical Engineering,Shanghai Electrochemical Energy Device Research Center(SEED),School of Chemistry and Chemical Engineering,Frontiers Science Center for Transformative Molecules,Shanghai Jiao Tong University,Shanghai 200240,China;Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;Shanghai Jiao Tong University Sichuan Research Institute,Chengdu 610213,China
Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode
Xin Cao;Haifeng Li;Yu Qiao;Min Jia;Hirokazu Kitaura;Jianan Zhang;Ping He;Jordi Cabana;Haoshen Zhou-Energy Technology Research Institute,National Institute of Advanced Industrial Science and Technology (AIST),Tsukuba 305-g568,Japan;Graduate School of System and Information Engineering,University of Tsukuba,Tsukuba 305-8573,Japan;Department of Chemistry,University of Illinois at Chicago,Chicago,IL 60607,USA;College of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;Center of Energy Storage Materials & Technology,College of Engineering and Applied Sciences,Jiangsu Key Laboratory of Artificial Functional Materials,National Laboratory of Solid State Microstructures,and Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China
Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere
Mengting Cai;Hehe Zhang;Yinggan Zhang;Bensheng Xiao;Lei Wang;Miao Li;Ying Wu;Baisheng Sa;Honggang Liao;Li Zhang;Shuangqiang Chen;Dong-Liang Peng;Ming-Sheng Wang;Qiaobao Zhang-Department of Materials Science and Engineering,College of Materials,Xiamen University,Xiamen 361005,China;Department of Chemical Engineering,School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China;School of Materials and Energy,Lanzhou University,Lanzhou 730000,China;Key Laboratory of Eco-materials Advanced Technology,College of Materials Science and Engineering,Fuzhou University,Fuzhou 350108,China;College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China;Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(IKKEM),Xiamen 361005,China
Cationic-potential tuned biphasic layered cathodes for stable desodiation/sodiation
Xu Gao;Huanqing Liu;Hongyi Chen;Yu Mei;Baowei Wang;Liang Fang;Mingzhe Chen;Jun Chen;Jinqiang Gao;Lianshan Ni;Li Yang;Ye Tian;Wentao Deng;Roya Momen;Weifeng Wei;Libao Chen;Guoqiang Zou;Hongshuai Hou;Yong-Mook Kang;Xiaobo Ji-College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China;Materials Science and Engineering,Korea University,Seoul 02841,Republic of Korea;Department of Energy and Materials Engineering,Dongguk University-Seoul,Seoul 04620,Republic of Korea;School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210014,China;State Key Laboratory of Powder Metallurgy,Central South University,Changsha 410083,China;KU-KIST Graduate School of Converging Science and Technology,Korea University,Seoul 02841,Republic of Korea
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。