首站-论文投稿智能助手
典型文献
Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
文献摘要:
A new design of surface plasmon resonance(SPR)sensor employing circular-lattice holey fiber to achieve high-sensitivity detection is proposed.The sensing performance of the proposed sensor is numerically investigated and the results indicate that our proposed SPR sensor can be applied to the near-mid infrared detection.Moreover,the maximum wavelength sensitivity of our proposed sensor can reach as high as 1.76×104 nm/refractive index unit(RIU)and the max-imum wavelength interrogation resolution can be up to 5.68×10-6 RIU when the refractive index(RI)of analyte lies in(1.31,1.36).Thanks to its excellent sensing performance,our proposed SPR sensor will have great potential applications for biological analytes detection,food safety control,bio-molecules detection and so on.
文献关键词:
作者姓名:
Jian-Fei Liao;Dao-Ming Lu;Li-Jun Chen;Tian-Ye Huang
作者机构:
School of Mechanical and Electrical Engineering,Wuyi University,Wuyishan 354300,China;College of Physics and Electronic Information,Gannan Normal University,Ganzhou 341000,China;School of Mechanical Engineering and Electronic Information,China University of Geosciences(Wuhan),Wuhan 430074,China
引用格式:
[1]Jian-Fei Liao;Dao-Ming Lu;Li-Jun Chen;Tian-Ye Huang-.Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber)[J].中国物理B(英文版),2022(06):300-304
A类:
B类:
Numerical,study,highly,sensitive,surface,plasmon,resonance,sensor,circular,lattice,holey,fiber,new,design,SPR,employing,achieve,sensitivity,detection,is,proposed,sensing,performance,numerically,investigated,results,indicate,that,our,can,applied,near,mid,infrared,Moreover,maximum,wavelength,reach,refractive,unit,RIU,interrogation,resolution,up,when,lies,Thanks,its,excellent,will,have,great,potential,applications,biological,analytes,food,safety,control,molecules
AB值:
0.514642
相似文献
A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2
Zhi Chen;Jingfeng Li;Tianzhong Li;Taojian Fan;Changle Meng;Chaozhou Li;Jianlong Kang;Luxiao Chai;Yabin Hao;Yuxuan Tangl;Omar A.Al-Hartomy;Swelm Wageh;Abdullah G.Al-Sehemi;Zhiguang Luo;Jiangtian Yu;Yonghong Shao;Defa Li;Shuai Feng;William J.Liu;Yaqing He;Xiaopeng Ma;Zhongjian Xie;Han Zhang-Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics;International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education;Shenzhen Institute of Translational Medicine;Department of Otolaryngology,Shenzhen Second People's Hospital;the First Affiliated Hospital;Institute of Microscale Optoelectronics,Shenzhen University,Shenzhen 518060,China;Shenzhen International Institute for Biomedical Research,Shenzhen 518116,China;Shenzhen Han's Tech Limited Company,Shenzhen 518000,China;Shenzhen Metasensing Tech Limited Company,Shenzhen 518000,China;Department of Physics,Faculty of Science,King Abdulaziz University,Jeddah 21589,Saudi Arabia;Research Center for Advanced Materials Science(RCAMS),King Khalid University,Abha 61413,Saudi Arabia;Department of Chemistry,College of Science,King Khalid University,Abha 61413,Saudi Arabia;Zhongmin(Shenzhen)Intelligent Ecology Co Ltd,Shenzhen 518055,China;Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China;Department of Laboratory Medicine,Shenzhen Children's Hospital,Shenzhen 518038,China;Optoelectronics Research Center,School of Science,Minzu University of China,Beijing 100081,China;NHC Key Laboratory of Biosafety,National Institute for Viral Disease Control and Prevention,Chinese Center for Disease Control and Prevention,Beijing 102206,China;Research Unit of Adaptive Evolution and Control of Emerging Viruses,Chinese Academy of Medical Sciences,Beijing 102206,China;Institute of Pathogenic Organism,Shenzhen Center for Disease Control and Prevention,Shenzhen 518055,China;Respiratory Department,Shenzhen Children's Hospital,Shenzhen 518038,China;Institute of Pediatrics,Shenzhen Children's Hospital,Shenzhen 518038,China
Quantum precision measurement of two-dimensional forces with 10-28-Newton stability
Xinxin Guo;Zhongcheng Yu;Fansu Wei;Shengjie Jin;Xuzong Chen;Xiaopeng Li;Xibo Zhang;Xiaoji Zhou-State Key Laboratory of Advanced Optical Communication System and Network,School of Electronics,Peking University,Beijing 100871,China;State Key Laboratory of Surface Physics,Key Laboratory of Micro and Nano Photonic Structures(MOE),and Department of Physics,Fudan University,Shanghai 200433,China;Institute for Nanoelectronic Devices and Quantum Computing,Fudan University,Shanghai 200433,China;Shanghai Qi Zhi Institute,Al Tower,Xuhui District,Shanghai 200232,China;Shanghai Research Center for Quantum Sciences,Shanghai 201315,China;International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China;Institute of Advanced Functional Materials and Devices,Shanxi University,Taiyuan 030031,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。