典型文献
单原子Co位点的CO2还原反应路径:局部配位环境的影响
文献摘要:
在CO2还原反应(CO2RR)应中,单原子催化剂被认为是很有前途的电催化剂.Co-N4活性位点因其优异的CO选择性和活性而受到广泛关注.然而,Co位点的局部配位环境与CO2RR途径之间的相关性尚不明确.本文采用密度泛函理论(DFT)计算,研究了含1,10-菲咯啉基底的N4-大环配体(Co-N4-CPY)负载的CoN4位点上的CO2RR路径.该模型的平面空间构型使其具有高度离域的π电子轨道,可以通过π-π相互作用更好地与底物相互作用.在相对可逆氢电极(RHE)为-0.70 V时,最大CO的法拉第效率为96%,CO的转换频率为9.59 s1.众所周知,单原子位点的局部配位环境可以进一步优化电催化性能.因此,本文还研究了N被O(Co-N3O-CPY)和C(Co-N3C-CPY)取代的单原子Co位点的局部配位环境.计算结果表明,Co-N4,Co-N3O和Co-N3C位点的键长相差不大,而且其结合能都较大,意味着它们具有良好的稳定性.Co-N3C-CPY,Co-N3O-CPY和Co-N4-CPY的投影态密度(PDOS)、电荷密度差分和晶体轨道哈密顿布居(COHP)显示,C和O配位均打破了初始CoN4配体场的对称性,并诱发了Co原子的电荷再分布.Co原子与配位原子间的相互作用由强到弱依次为Co-C键、Co-N键和Co-O键,这与电负性O>N>C相反.通过分析CO2RR过程的吉布斯自由能变化,确定了Co-N4-CPY的主要产物为CO.当Co-N4位点的局部配位环境改变后,Co-N3O位点上有利于*COOH的形成,而Co-N3C位点对碳氢化合物(CH3OH或CH4)有更高的选择性.这是由于CO2在Co-N3O位点上更容易质子化形成*OCHO,从而有利于HCOOH的形成.而在Co-N3C位点上时,由于*CO难以脱附,*CO将进一步质子化,最终形成CH3OH或CH4.CO2质子化形成*COOH或*OCHO的PDOS显示,在Co位上吸附之前,*OCHO的自旋密度是对称的,而*COOH的自旋密度是不对称的.对于催化剂而言,只有Co-N3O-CPY的自旋密度是对称的,因此容易形成*OCHO中间体.Co-3d轨道与*COOH的C-2p轨道和*OCHO的O-2p轨道的相互作用也体现了这一关系.本工作为单原子位点的局部配位环境与CO2RR途径之间的关系提供了一个新的视角.
文献关键词:
配位环境;产品选择性;单原子催化剂;CO2还原反应;密度泛函理论计算
中图分类号:
作者姓名:
高海峡;刘康;罗涛;陈羽;胡俊华;傅俊伟;刘敏
作者机构:
湖南科技学院理学院,湖南永州425100;中南大学物理与电子学院,湖南长沙410083;郑州大学材料科学与工程学院,河南郑州450002
文献出处:
引用格式:
[1]高海峡;刘康;罗涛;陈羽;胡俊华;傅俊伟;刘敏-.单原子Co位点的CO2还原反应路径:局部配位环境的影响)[J].催化学报,2022(03):832-838
A类:
大环配体,CoN4,N3O,投影态密度,COHP
B类:
还原反应,反应路径,配位环境,CO2RR,单原子催化剂,前途,电催化剂,活性位点,DFT,菲咯啉,CPY,平面空间,空间构型,底物,RHE,法拉第效率,s1,众所周知,电催化性能,N3C,键长,长相,结合能,PDOS,电荷密度,密度差,哈密顿,再分布,原子间,强到,电负性,吉布斯自由能变,碳氢化合物,CH3OH,CH4,质子化,OCHO,HCOOH,脱附,自旋密度,中间体,3d,2p,这一关,产品选择性,密度泛函理论计算
AB值:
0.209641
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。