首站-论文投稿智能助手
典型文献
一种疲劳驾驶检测中的脑电信号通道选择方法
文献摘要:
针对传统的基于全通道脑电信号(EEG)的疲劳驾驶检测方法中存在数据冗余和硬件设施复杂的问题,提出一种基于阈值筛选的通道选择方法.首先对多个特征计算标准差等指标分别筛选出每个特征各自的理想通道;其次使用多层感知超限学习机(H-ELM)和使用粒子群优化算法(PSO)优化后的多层感知超限学习机(PSO-H-ELM)分别对理想通道的数据进行二分类,并且与全通道数据的分类结果进行对比.分别采用了 2组实验数据(一组数据通过实验室的模拟驾驶设备采集,受试6人;一组数据来自于公开数据集,受试12人;两者采集设备不同)对提出的方法进行了验证.实验结果表明,对于18名受试者,使用集合经验模态分解(EEMD)所获得的有限个本征模函数(IMF)的功率谱(PSD)特征普遍能够得到较多理想通道,并且对于同一设备,理想通道的分布大致相同并且通道数较少(分别为8个和11个通道).同时,此通道选择方法还极大提高了疲劳驾驶检测的分类准确率(18名被试在使用理想通道数据下的平均准确率达到了 99.75%,比使用全通道数据的准确率提高19.36%).此外,样本熵的理想通道与功率谱的理想通道几乎不重合,说明两种特征具有很好的互补性,两者特征结合提高了本方法的实用性,在疲劳驾驶检测的应用上具有一定参考价值.
文献关键词:
疲劳驾驶检测;脑电信号;集合经验模态分解;多层感知超限学习机
作者姓名:
郑赟;马玉良;孙明旭;申涛;张建海;佘青山
作者机构:
杭州电子科技大学自动化学院,杭州 310018;浙江省脑机协同智能重点实验室,杭州 310018;济南大学自动化与电气工程学院,济南 250022;杭州电子科技大学计算机学院,杭州 310018
引用格式:
[1]郑赟;马玉良;孙明旭;申涛;张建海;佘青山-.一种疲劳驾驶检测中的脑电信号通道选择方法)[J].中国生物医学工程学报,2022(04):402-411
A类:
多层感知超限学习机
B类:
疲劳驾驶检测,脑电信号,通道选择,选择方法,全通道,EEG,数据冗余,硬件设施,阈值筛选,特征计算,计算标准,ELM,粒子群优化算法,PSO,二分类,通道数,数据通,模拟驾驶,公开数据集,集合经验模态分解,EEMD,本征模函数,IMF,功率谱,PSD,大致相同,分类准确率,平均准确率,样本熵,不重,互补性,特征结合
AB值:
0.234604
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。