典型文献
基于Sentinel-3 OLCI影像的巢湖藻蓝素浓度年内动态遥感监测
文献摘要:
藻蓝素(PC)是水体蓝藻的指示性色素,其浓度反映了蓝藻生物量,利用卫星遥感监测藻蓝素浓度年内动态对蓝藻水华的有效防控有着重要意义.根据不同季节的巢湖藻蓝素浓度实测数据与同期Sentinel-3 OLCI影像,构建机器学习回归反演模型,应用于巢湖2019年OLCI影像集上,对巢湖藻蓝素浓度的空间分布、年内变化进行遥感监测.研究表明:在MUMM和C2RCC水体大气校正方法中,C2RCC的大气校正结果更接近实测光谱反射率;在机器学习回归算法中,基于梯度提升回归的藻蓝素浓度反演模型精度最高,其R2、RMSE和rRMSE分别达到0.84、49.76 μg/L和34.1%.水体藻蓝素浓度在1-4月及12月较低,在5-11月浓度较高且波动频繁,日均气温是水体藻蓝素浓度年内变化的主要原因,而藻蓝素短期剧烈波动主要是受到日降水量和日照时数的影响;在夏、秋季节,西湖区藻蓝素浓度明显高于中、东湖区,主要与入湖河流中氮磷等物质的高输入有关.Sentinel-3 OLCI影像为湖库水体藻蓝素浓度动态监测提供了重要数据源,梯度提升回归算法在富营养化水体藻蓝素浓度反演中具有较大的应用潜力.
文献关键词:
Sentinel-3 OLCI;机器学习;藻蓝素;遥感反演;时空变化;巢湖
中图分类号:
作者姓名:
汪志成;王杰;晏实江;崔玉环;王行行
作者机构:
安徽大学资源与环境工程学院,合肥230601;安徽大学湿地生态保护与修复安徽省重点实验室,合肥230601;安徽省地理信息工程中心,合肥230601;安徽农业大学理学院,合肥230036
文献出处:
引用格式:
[1]汪志成;王杰;晏实江;崔玉环;王行行-.基于Sentinel-3 OLCI影像的巢湖藻蓝素浓度年内动态遥感监测)[J].湖泊科学,2022(02):391-403
A类:
藻蓝素,MUMM
B类:
Sentinel,OLCI,巢湖,遥感监测,指示性,性色,生物量,卫星遥感,蓝藻水华,不同季节,反演模型,C2RCC,大气校正,校正方法,测光,光谱反射率,回归算法,梯度提升,升回,模型精度,rRMSE,日均气温,日降水量,日照时数,西湖区,东湖区,入湖河流,氮磷,湖库水,重要数据,数据源,富营养化水体,遥感反演,时空变化
AB值:
0.230567
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。