典型文献
多类型注意力下参数自适应的多标签文本分类
文献摘要:
多标签文本分类是指从一个极大的标签集合中为每个文档分配最相关的多个标签.该文提出一种多类型注意力机制下参数自适应模型(Parameter Adaptive Model under Multi-strategy Attention Mechanism,MSAPA)对文档进行建模和分类.MSAPA模型主要包括两部分:第一部分采用多类型注意力机制分别提取融合自注意力机制的全局关键词特征和局部关键词特征及融合标签注意力机制的全局关键词特征和局部关键词特征;第二部分采用多参数自适应策略为多类型注意力机制动态分配不同的权重,从而学习到更优的文本表示,提升分类的准确率.在 AAPD和 RCV1 两个基准数据集上的大量实验证明了 MSAPA模型的优越性.
文献关键词:
多类型注意力机制;参数自适应;多标签文本分类
中图分类号:
作者姓名:
李智强;过弋;王志宏
作者机构:
华东理工大学 信息科学与工程学院,上海 200237;大数据流通与交易技术国家工程实验室 商业智能与可视化技术研究中心,上海 200436;上海大数据与互联网受众工程技术研究中心,上海 200072
文献出处:
引用格式:
[1]李智强;过弋;王志宏-.多类型注意力下参数自适应的多标签文本分类)[J].中文信息学报,2022(10):116-125
A类:
多类型注意力机制,MSAPA
B类:
参数自适应,多标签文本分类,标签集,文档,适应模型,Parameter,Adaptive,Model,under,Multi,strategy,Attention,Mechanism,第一部,自注意力机制,词特征,融合标签,标签注意力机制,第二部,多参数,自适应策略,略为,动态分配,文本表示,AAPD,RCV1,基准数据集
AB值:
0.280385
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。