典型文献
层次化结构全局上下文增强的篇章级神经机器翻译
文献摘要:
如何有效利用篇章上下文信息一直是篇章级神经机器翻译研究领域的一大挑战.该文提出利用来源于整个篇章的层次化全局上下文来提高篇章级神经机器翻译性能.为了实现该目标,该文提出的模型分别获取当前句内单词与篇章内所有句子及单词之间的依赖关系,结合不同层次的依赖关系以获取含有层次化篇章信息的全局上下文表示.最终源语言当前句子中的每个单词都能获取其独有的综合词和句级别依赖关系的上下文.为了充分利用平行句对语料在训练中的优势,该文使用两步训练法,在句子级语料训练模型的基础上使用含有篇章信息的语料进行二次训练以获得捕获全局上下文的能力.在若干基准语料数据集上的实验表明,该文提出的模型与若干强基准模型相比取得了有意义的翻译质量提升.实验进一步表明,结合层次化篇章信息的上下文比仅使用词级别上下文更具优势.除此之外,该文还尝试通过不同方式将全局上下文与翻译模型结合并观察其对模型性能的影响,并初步探究篇章翻译中全局上下文在篇章中的分布情况.
文献关键词:
神经机器翻译;篇章翻译;篇章上下文
中图分类号:
作者姓名:
陈林卿;李军辉;贡正仙
作者机构:
苏州大学 自然语言处理实验室,江苏 苏州 215006
文献出处:
引用格式:
[1]陈林卿;李军辉;贡正仙-.层次化结构全局上下文增强的篇章级神经机器翻译)[J].中文信息学报,2022(09):67-75
A类:
篇章上下文
B类:
层次化结构,全局上下文,上下文增强,神经机器翻译,上下文信息,翻译研究,翻译性能,单词,依赖关系,不同层次,源语言,语料,两步,训练法,句子级,训练模型,有篇,干基,翻译质量,结合层,用词,除此之外,不同方式,翻译模型,模型性能,篇章翻译
AB值:
0.257252
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。