典型文献
卫星遥感影像特定目标的超分辨率重建算法
文献摘要:
鉴于目前基于深度学习的超分辨率重建算法存在实际应用精度低、训练样本处理效果差等问题,提出了一种新的遥感影像超分辨率重建算法.该方法将飞机和机场作为特定目标样本集,创立混合降质模型实现数据预处理,通过引入全局和局部残差学习策略改进深度卷积神经网络结构,再采用卷积层与反卷积层的图像特征融合重建高精度目标.该模型在多个目标数据集中训练,并采用多种主观和客观评估方法测试,与目前主流方法展开对比.实验结果表明,在定量指标评估中,在不同缩放因子下,该方法的峰值信噪比和结构相似度相对Bicubic、SRCNN、SRGAN、RFANet、EDSR和MCSR方法有较高提升.在分辨率卡的主观视觉评价中,该方法的有效分辨率提升倍数明显高于其他方法.该方法对遥感影像特定目标的超分辨率重建中获取细节特征信息的能力更高,重建目标拥有更高精度和清晰度,有利于航天对地观测的高精度图像解译和信息研判.
文献关键词:
深度学习;特定目标;超分辨率重建;深度卷积神经网络;混合降质模型;残差学习
中图分类号:
作者姓名:
王宇昊;王铸
作者机构:
贵州天衍炬恒科技有限公司,贵阳550081;贵州师范大学地理与环境科学学院,贵阳 550025
文献出处:
引用格式:
[1]王宇昊;王铸-.卫星遥感影像特定目标的超分辨率重建算法)[J].遥感信息,2022(05):108-115
A类:
混合降质模型,RFANet,MCSR
B类:
卫星遥感影像,特定目标,超分辨率重建,重建算法,训练样本,样本处理,处理效果,样本集,模型实现,数据预处理,残差学习,学习策略,进深,深度卷积神经网络,神经网络结构,卷积层,反卷积,图像特征,特征融合,客观评估,主流方法,定量指标,指标评估,缩放因子,峰值信噪比,结构相似度,Bicubic,SRCNN,SRGAN,EDSR,视觉评价,有效分辨率,倍数,其他方法,细节特征,特征信息,清晰度,对地观测,图像解译
AB值:
0.345236
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。