典型文献
基于机器学习算法的奶牛疾病预测模型的研究
文献摘要:
[目的]评估建立奶牛疾病预测模型的6种机器学习(machine learning,ML)算法的性能及预测变量的重要性.[方法]选取2020年12月至2021年11月,共计944头泌乳牛的生产信息、行为信息作为预测因子,疾病信息作为输出变量,训练并验证模型.将日产奶量、反刍量、活动量、胎次和泌乳天数作为输入变量,利用ML算法建立奶牛疾病的预测模型,评估决策树(Decision Tree,DT)C5.0、CHAID算法、人工神经网络(Artificial Neural Network,ANN)、随机森林(Random Forests,RF)、贝叶斯网络(Bayesian Networks,BN)和逻辑回归(Logistic Regression,LR)6种ML算法的性能,评估预测变量的重要性,以及将胎次和泌乳天数纳入预测变量后模型性能的改善情况.采用敏感性和特异性评估模型性能,按照权重排序评估输入变量对模型预测的重要性.[结果]DTC5.0算法敏感性>85%,特异性>90%,为性能最佳的模型;RF总敏感性为56.8%,对各类牛预测的性能较稳定;ANN、BN、DT CHAID则对样本量较多的疾病预测性能较好,可达74.4%;LR对病牛正确识别率不足40.0%,大多识别为健康牛.产奶量为RF、ANN、LR最重要的预测变量,泌乳天数为DT C5.0、CHAID和BN最重要的预测变量;纳入胎次和泌乳天数后,模型预测的敏感性平均提高9.8%.[结论]ML算法在对奶牛疾病的预测方面表现出很大潜力,其中,DT C5.0更适合用于预测奶牛疾病.产奶量和泌乳天数为疾病预测模型中相对重要的变量,此外,将胎次和泌乳天数纳入预测变量,可提高模型的预测精度.
文献关键词:
奶牛;机器学习;疾病预测
中图分类号:
作者姓名:
李尚汝;宋佳美;张城瑞;孙雨坤;张永根
作者机构:
东北农业大学动物科学技术学院,哈尔滨150030
文献出处:
引用格式:
[1]李尚汝;宋佳美;张城瑞;孙雨坤;张永根-.基于机器学习算法的奶牛疾病预测模型的研究)[J].中国畜牧兽医,2022(07):2534-2546
A类:
排序评估,DTC5
B类:
基于机器学习,机器学习算法,奶牛,牛疾病,疾病预测,machine,learning,ML,预测变量,泌乳牛,生产信息,预测因子,验证模型,日产奶量,反刍,活动量,胎次,评估决策,决策树,Decision,Tree,CHAID,人工神经网络,Artificial,Neural,ANN,Random,Forests,RF,贝叶斯网络,Bayesian,Networks,BN,逻辑回归,Regression,LR,评估预测,模型性能,重排序,样本量,预测性能,识别率
AB值:
0.299244
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。