典型文献
基于Faster R卷积神经网络构建胸部X线片异物智能检测模型的可行性研究
文献摘要:
目的:构建基于Faster R卷积神经网络的后前位胸部X线片异物智能检测模型,并评估模型的性能。方法:回顾性分析2019年6月至2020年3月浙江省人民医院和淳安县人民医院的成人后前位DR胸片5 567张,其中含异物胸片4 247张。分为异物训练集(2 911张异物胸片)、验证集(1 456张,733张含异物、723张无异物)和测试集(1 200张,603张含异物、597张无异物)。每张胸片的异物经过2名放射住院医师标注和1名高年资放射技师审核校正后的结果作为参考金标准。采用受试者操作特征(ROC)曲线及曲线下面积分析深度学习模型在测试集中区分胸片有无异物的效能,采用精准率-召回率曲线及平均精确度(mAP)分析模型在不同层级的稳定性。最后分析不同位置、患者性别、患者年龄对于深度学习模型的异物召回率的影响。结果:测试集中,深度学习模型诊断胸片是否含有异物的灵敏度为93.2%(562/603),特异度为92.6%(553/597),F1分数为0.94,ROC曲线下面积为0.97,mAP值为0.69。对于不同位置的异物,肺野内和肺野外的异物检测的召回率分别为91.2%(674/739)和89.0%(1 411/1 585)。对于不同性别的患者,男性和女性的异物检测召回率分别为87.3%(337/386)和90.0%(1 745/1 938)。对于不同的年龄分段,18~38岁的异物检测召回率为92.5%(1 041/1 126),39~58岁的异物检测召回率为89.7%(505/563),59~78岁的异物检测召回率为83.5%(335/401),≥79岁的异物检测召回率为85.9%(201/234)。结论:构建的基于深度学习的成人后前位胸部X线片异物检测模型具有很高的灵敏度和稳定性,可以快速准确地识别胸片中的异物。
文献关键词:
X线;胸;异物;质量控制;深度学习
中图分类号:
作者姓名:
孟宇;马之骋;阮敬儒;高阳;杨柏林;何林阳;龚向阳
作者机构:
浙江省人民医院 杭州医学院附属人民医院康复医学中心放射科,杭州 310014;浙江工商大学计算机与信息工程学院,杭州 310018;杭州健培科技有限公司,杭州 311200
文献出处:
引用格式:
[1]孟宇;马之骋;阮敬儒;高阳;杨柏林;何林阳;龚向阳-.基于Faster R卷积神经网络构建胸部X线片异物智能检测模型的可行性研究)[J].中华放射学杂志,2022(12):1359-1364
A类:
B类:
Faster,网络构建,胸部,智能检测,检测模型,可行性研究,淳安县,DR,胸片,训练集,验证集,无异,测试集,每张,射住,住院医师,高年资,放射技师,金标准,操作特征,深度学习模型,集中区,召回率,mAP,不同位置,患者年龄,异物检测,快速准确
AB值:
0.204175
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。