首站-论文投稿智能助手
典型文献
基于极限学习机模型的空气质量二次预报
文献摘要:
目前对空气质量的预报常使用WRF-CMAQ模拟体系,但受限于模拟条件,预测结果并不理想,因此基于某监测点的污染物浓度实测数据,在预报过程中使用这些实测数据对一次预报数据进行修正以达到更好的预报效果.利用极限学习机模型训练对数据的预测,以AQI和首要污染物的误差这两个指标的加权组合作为适应度,通过遗传算法来优化模型,得到更准确地预测结果.并在对位置时间数据进行预测时采用滚动预测的方法以降低预测误差,相较于一次预测的预测误差降低了5%以上.结果表明:优化后的模型在空气质量预测的准确率方面有很大的提高.
文献关键词:
大气污染;插值;极限学习机;遗传算法
作者姓名:
朱盛恺;陈劲杰
作者机构:
上海理工大学,上海 200093
文献出处:
引用格式:
[1]朱盛恺;陈劲杰-.基于极限学习机模型的空气质量二次预报)[J].软件工程,2022(08):39-42
A类:
B类:
极限学习机模型,WRF,CMAQ,模拟体系,受限于,监测点,污染物浓度,报数,预报效果,模型训练,AQI,首要污染物,适应度,滚动预测,预测误差,空气质量预测,大气污染
AB值:
0.325027
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。