首站-论文投稿智能助手
典型文献
改进BERT的故障案例智能匹配方法
文献摘要:
随着工业界的快速发展,电网输变电设备日常检修维护工作中积累了大量设备故障案例检修记录,文本匹配技术从大量的故障案例数据中挖掘出与目标故障案例相似度高的案例,对现场运检人员遇到新故障时快速判断和检修决策具有重要参考价值.当前,大多数文本匹配的方法都是通过构建卷积神经网络(Convolutional Neural Networks,CNN)、长短期记忆网络(Long Short?Term Memory,LSTM)模型来计算文本之间的相似度,忽略了海量无标签文本数据中潜在的深层语义信息.因此,构建一种新型的文本匹配模型将相似案例匹配问题转化为句子对的二分类问题,利用改进的预训练语言模型(Bidirectional Encoder Representations from Transformers,BERT)提取句子对的深层语义特征,进而接入分类模型捕获句子对的语义相似度.试验表明所提出的方法在故障相似案例数据上相比于CNN、LSTM有更高的匹配准确率.
文献关键词:
故障案例;文本匹配;BERT;LSTM;CNN
作者姓名:
杨祎;崔其会;秦佳峰;郑文杰;乔木
作者机构:
国网山东省电力公司电力科学研究院,山东 济南 250003;国网山东省电力公司,山东 济南 250001
文献出处:
引用格式:
[1]杨祎;崔其会;秦佳峰;郑文杰;乔木-.改进BERT的故障案例智能匹配方法)[J].山东电力技术,2022(02):47-53
A类:
B类:
BERT,故障案例,智能匹配,匹配方法,工业界,输变电设备,检修维护,维护工作,设备故障,匹配技术,挖掘出,运检,新故障,检修决策,Convolutional,Neural,Networks,长短期记忆网络,Long,Short,Term,Memory,无标签,文本数据,深层语义信息,文本匹配模型,将相,相似案例匹配,匹配问题,问题转化,句子,二分类问题,预训练语言模型,Bidirectional,Encoder,Representations,from,Transformers,语义特征,分类模型,语义相似度,故障相,匹配准确率
AB值:
0.414392
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。