首站-论文投稿智能助手
典型文献
融合网络表示学习与文本信息的学术文献推荐方法
文献摘要:
[目的/意义]为了从引文网络、文献内容、标签等多角度挖掘文献间的深层次关系,进而提高学术文献推荐的效果,提出一种融合网络表示学习与文本信息的学术文献推荐方法.[方法/过程]首先,使用网络表示学习、BERT、标签针对文献库分别生成基于引文网络的特征向量表示、基于长文本内容的特征向量表示以及基于短文本标签的特征向量表示;其次,针对网络表示学习及BERT生成的向量进行一次特征融合,采用余弦相似性算法分别计算特征融合及标签对应的文献相似度矩阵,并对其进行二次相似度矩阵融合,获取文献综合相似度矩阵;最后,按照相似度大小对待推荐的文献进行排序,实现Top-N推荐.[结果/结论]在CiteUlike数据集上进行实验验证,相比于对比方法在准确率、召回率和F值上平均提升了31.05%、28.51%和29.70%,结果表明本文方法较于单一推荐方法可以有效提高学术文献推荐的质量.
文献关键词:
网络表示学习;Node2vec;标签;BERT;推荐;学术文献
作者姓名:
祝婷
作者机构:
西安工业大学图书馆 西安 710021
文献出处:
引用格式:
[1]祝婷-.融合网络表示学习与文本信息的学术文献推荐方法)[J].情报工程,2022(03):81-92
A类:
文献相似度,CiteUlike
B类:
融合网络,网络表示学习,文本信息,学术文献,文献推荐,推荐方法,引文网络,层次关系,BERT,特征向量,向量表示,长文,文本内容,短文本,特征融合,余弦相似性,相似性算法,相似度矩阵,二次相,Top,比方,召回率,Node2vec
AB值:
0.259841
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。