首站-论文投稿智能助手
典型文献
基于神经网络的CFB锅炉灰渣含碳量预测
文献摘要:
建立神经网络子母模型用于实时预测CFB(循环流化床)锅炉灰渣平均含碳量,其中子模型通过煤质参数得到煤质燃尽特性指数,母模型通过锅炉运行参数与煤质燃尽特性指数预测灰渣含碳量的实时值,训练后子模型和母模型的MAE(平均绝对误差)分别为0.3432和0.9747.将某热电厂现场CFB锅炉性能试验数据代入神经网络模型进行计算,得到灰渣平均含碳量预测值与真实值的MAE为0.84%,锅炉效率预测值与真实值的MAE为0.15%,证明模型具有较好的泛化性.最后,建立一个直接将煤质参数和锅炉运行参数作为输入参数的神经网络模型,训练后模型的MAE为1.0380,灰渣含碳量和锅炉效率的预测值与真实值的MAE分别为1.29%和0.23%,误差大于使用子模型的预测误差,验证了子模型的必要性.
文献关键词:
循环流化床锅炉;煤质燃尽特性指数;人工神经网络;灰渣含碳量
作者姓名:
陈斌;王树宇;刘林涛;朱伟;董瑀非
作者机构:
桐乡泰爱斯环保能源有限公司,浙江 嘉兴 314500;能源清洁利用国家重点实验室(浙江大学),杭州 310027
文献出处:
引用格式:
[1]陈斌;王树宇;刘林涛;朱伟;董瑀非-.基于神经网络的CFB锅炉灰渣含碳量预测)[J].浙江电力,2022(03):93-99
A类:
灰渣含碳量,煤质燃尽特性指数
B类:
CFB,炉灰,络子,实时预测,中子,子模型,煤质参数,锅炉运行,运行参数,时值,MAE,平均绝对误差,热电厂,锅炉性能,性能试验,代入,入神,真实值,锅炉效率,泛化性,输入参数,预测误差,循环流化床锅炉,人工神经网络
AB值:
0.197961
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。