典型文献
解决抽象标签的图像分类的多示例两阶段模型
文献摘要:
经过训练的分类模型可以准确识别出图像中的具体对象,找出"图像中有什么",但针对诸如"图片描述了什么"的抽象概念标签的图像分类问题研究较少,研究难度也更大.抽象概念标签不属于图像中包含的任何一个具体的对象,而是由许多不同的概念混合在一起,所以直接学习这个抽象标签相当困难.为了解决这类抽象标签的图像分类问题,借助多示例学习方法思路,设计并实现了多示例两阶段模型.该模型由两个阶段构成,第一阶段基于Yolo模型修改,实现从图像中快速、精准提取出具体对象,第二阶段构建多层感知机,利用第一阶段模型的结果最终得到图像的分类抽象概念.最后,通过一个具有示范性的实验案例,验证多示例两阶段模型可以利用多示例学习有效解决抽象标签的图像分类问题,展示了多示例两阶段模型的可行性.
文献关键词:
多示例学习;图像分类;抽象标签;Yolo;多层感知机
中图分类号:
作者姓名:
于全;宋金玉;余晓晗
作者机构:
陆军工程大学 指挥控制工程学院,江苏 南京 210007
文献出处:
引用格式:
[1]于全;宋金玉;余晓晗-.解决抽象标签的图像分类的多示例两阶段模型)[J].计算机技术与发展,2022(06):68-73
A类:
抽象标签
B类:
图像分类,两阶段模型,经过训练,分类模型,准确识别,出图,抽象概念,分类问题,合在一起,多示例学习,方法思路,第一阶段,Yolo,精准提取,第二阶段,多层感知机,示范性,实验案例
AB值:
0.190733
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。