首站-论文投稿智能助手
典型文献
基于深度学习和H&E染色病理图像的肿瘤相关指标预测研究综述
文献摘要:
肿瘤的精确诊断对患者的治疗方案选择和预后预测都非常重要.病理学诊断被认为是肿瘤诊断的"金标准",但是,病理学发展目前仍然面临着巨大的挑战,如病理医生的缺乏,特别是在欠发达地区和小医院,这将导致病理医生长期超负荷工作,同时,病理诊断严重依赖于病理医生的专业知识和诊断经验,病理医生的主观性导致了诊断不一致性的激增.全切片扫描图像(Whole Slide Images,WSI)技术和深度学习方法的突破性进展为计算机辅助诊断和预后预测提供了新的发展机遇.苏木精伊红(Hematoxylin Eosin,H&E)染色的组织病理切片可以很好地显示细胞形态和组织结构,而且制作简单、成本便宜、使用广泛.仅仅从H&E染色的病理图像可以预测什么?在将深度学习方法应用到病理图像领域之后,这个问题得到了新的答案.文中首先总结了基于深度学习和病理图像的肿瘤相关指标预测的整体研究框架,按照整体研究框架发展的顺序将其总结为3个逐渐推进的阶段:基于人工选取感兴趣的单张图片小块进行WSI预测研究、基于多数投票的WSI预测研究以及具有普遍适用性的WSI预测研究.其次简单介绍了4种在WSI预测中经常用到的监督学习或弱监督学习方法:卷积神经网络、循环神经网络、图神经网络和多示例学习.然后综述了可以通过病理图像预测的肿瘤相关指标以及其最新研究进展,文中主要从两个方面进行文献的综述:预测专家可以阅片识别的肿瘤相关指标(肿瘤分类、肿瘤分级、肿瘤区域识别)和预测专家无法阅片识别的肿瘤相关指标(基因变异预测、分子亚型预测、治疗效果评估、生存期预测).最后展望了该领域面临的挑战和机遇.
文献关键词:
病理图像;深度学习;肿瘤相关指标;计算机辅助诊断;预测模型;医学图像分析
作者姓名:
颜锐;梁智勇;李锦涛;任菲
作者机构:
中国科学院计算技术研究所 北京100190;中国科学院大学 北京100049;北京协和医院病理科 北京100730
文献出处:
引用格式:
[1]颜锐;梁智勇;李锦涛;任菲-.基于深度学习和H&E染色病理图像的肿瘤相关指标预测研究综述)[J].计算机科学,2022(02):69-82
A类:
B类:
病理图像,肿瘤相关指标,指标预测,预测研究,精确诊断,方案选择,预后预测,病理学诊断,肿瘤诊断,金标准,欠发达地区,生长期,超负荷,病理诊断,主观性,不一致性,激增,全切,扫描图像,Whole,Slide,Images,WSI,深度学习方法,计算机辅助诊断,诊断和预后,苏木,木精,伊红,Hematoxylin,Eosin,病理切片,细胞形态,便宜,图像领域,题得,研究框架,结为,感兴趣,单张,小块,多数投票,弱监督学习,循环神经网络,图神经网络,多示例学习,最新研究进展,肿瘤分类,肿瘤分级,肿瘤区,区域识别,基因变异,分子亚型,效果评估,生存期预测,挑战和机遇,医学图像分析
AB值:
0.351032
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。