首站-论文投稿智能助手
典型文献
区块链群智感知中基于隐私数据真值估计的激励机制
文献摘要:
在基于区块链的群智感知系统中构建数据真值估计机制和用户激励机制受到了越来越多的关注.与传统的群智感知系统依赖一个集中平台来承载数据感知任务不同,该系统利用区块链分布式结构和操作透明不可抵赖的特性,使其具有更好的安全性和交互性.但是目前的研究总是独立分离设计数据真值估计机制和参与者激励机制,这导致2类机制在实际应用时往往具有局限性.针对这一问题,在综合考虑了数据真值估计精确度与用户激励后,提出了一类基于隐私保护数据真值估计的用户激励机制.该机制由2个模块组成,具有隐私保护的数据真值估计模块PATD和具有隐私保护的用户激励模块PFPI,这2个模块都是通过利用同态加密机制CKKS来构建的.由于数据采集设备精确度不够等原因,用户收集的数据往往具有噪声,因此PATD对用户提交的含有噪声的数据的加密结果进行计算,并将解密后的计算结果作为相应数据真值的估计.因为所用的数据均是加密的,所以可以保护用户数据隐私,同时,该机制还可以保证解密后的估计值具有较高的估计精度.此外,作为一种激励机制,PFPI满足真实性、个体合理性且具有较高的社会福利,同时利用CKKS保证用户在竞标过程中的竞价隐私安全.最后,进行了大量实验来验证所提的基于隐私保护数据真值估计的用户激励机制的各种特性.实验结果表明,该机制与最新方法相比具有更好的性能.
文献关键词:
区块链;群智感知;隐私保护;数据收集;真值估计;激励机制
作者姓名:
应臣浩;夏福源;李颉;斯雪明;骆源
作者机构:
上海交通大学计算机科学与工程系 上海 200240;上海交通大学区块链研究中心 上海 200240;无锡市区块链高等研究中心 江苏无锡 214000
引用格式:
[1]应臣浩;夏福源;李颉;斯雪明;骆源-.区块链群智感知中基于隐私数据真值估计的激励机制)[J].计算机研究与发展,2022(10):2212-2232
A类:
真值估计,PATD,PFPI
B类:
链群,群智感知,隐私数据,感知系统,用户激励,一个集,中平,数据感知,感知任务,式结构,抵赖,交互性,分离设计,隐私保护,该机,同态加密,加密机制,CKKS,提交,解密,用户数据,数据隐私,估计值,估计精度,社会福利,竞标,竞价,隐私安全,数据收集
AB值:
0.248654
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。