典型文献
基于校园上网行为感知的学生成绩预测方法
文献摘要:
学生成绩预测旨在利用学生的相关信息预测其在未来的学业表现.随着校园信息化建设的持续推进,校园网络认证系统越来越完善,各高校逐步积累了丰富的学生校园上网行为数据.考虑到人的行为表现和学习能力密切相关,以校园上网行为感知为切入点,通过挖掘学生的上网行为日志来预测他们的成绩.为此,收集构建了一个同时包含学生校园上网行为和成绩数据的真实数据集,并通过数据分析证明两者之间确实存在一定的关联性.在此基础上,提出了一个端到端的双层自注意力网络(dual-level self-attention network,DEAN),引入级联式的自注意力机制来分别提取学生每一天的局部上网行为特征和长时间的全局上网行为特征,更好地解决了长行为序列建模问题.此外,通过多任务学习策略在统一的框架下同时解决面向不同专业的学生成绩预测问题,并设计了基于学生排名差的代价敏感损失来进一步提升方法的性能.实验结果表明:相比于传统的序列建模方法,所提出的方法具有更好的预测精度.
文献关键词:
学生成绩预测;校园上网行为感知;双层自注意力网络;多任务学习;代价敏感学习
中图分类号:
作者姓名:
姚丽;崔超然;马乐乐;王飞超;马玉玲;陈勐;尹义龙
作者机构:
山东大学软件学院 济南 250100;山东财经大学计算机科学与技术学院 济南 250014;齐鲁师范学院网络信息中心 济南 250001;山东建筑大学计算机科学与技术学院 济南 250101
文献出处:
引用格式:
[1]姚丽;崔超然;马乐乐;王飞超;马玉玲;陈勐;尹义龙-.基于校园上网行为感知的学生成绩预测方法)[J].计算机研究与发展,2022(08):1770-1781
A类:
校园上网行为感知,双层自注意力网络
B类:
学生成绩预测,用学,信息预测,学业表现,校园信息化建设,校园网络,行为数据,人的行为,行为表现,行为日志,真实数据,实存,端到端,dual,level,self,attention,network,DEAN,级联式,自注意力机制,行为特征,行为序列,序列建模,多任务学习,学习策略,下同,提升方法,代价敏感学习
AB值:
0.230389
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。