首站-论文投稿智能助手
典型文献
融合自注意力机制的生成对抗网络跨视角步态识别
文献摘要:
目的 针对目前基于生成式的步态识别方法采用特定视角的步态模板转换、识别率随视角跨度增大而不断下降的问题,本文提出融合自注意力机制的生成对抗网络的跨视角步态识别方法.方法 该方法的网络结构由生成器、视角判别器和身份保持器构成,建立可实现任意视角间步态转换的网络模型.生成网络采用编码器—解码器结构将输入的步态特征和视角指示器连接,进而实现不同视角域的转换,并通过对抗训练和像素级损失使生成的目标视角步态模板与真实的步态模板相似.在判别网络中,利用视角判别器来约束生成视角与目标视角相一致,并使用联合困难三元组损失的身份保持器以最大化保留输入模板的身份信息.同时,在生成网络和判别网络中加入自注意力机制,以捕捉特征的全局依赖关系,从而提高生成图像的质量,并引入谱规范化使网络稳定训练.结果 在CASIA-B(Chinese Academy of Sciences'Institute of Automation gait database——dataset B)和OU-MVLP(OU-ISIR gait database-multi-view large population dataset)数据集上进行实验,当引入自注意力模块和身份保留损失训练网络时,在CASIA-B数据集上的识别率有显著提升,平均rank-1准确率比GaitGAN(gait generative adversarial network)方法高15%.所提方法在OU-MVLP大规模的跨视角步态数据库中仍具有较好的适用性,可以达到65.9%的平均识别精度.结论 本文方法提升了生成步态模板的质量,提取的视角不变特征更具判别力,识别精度较现有方法有一定提升,能较好地解决跨视角步态识别问题.
文献关键词:
机器视觉;步态识别;跨视角;自注意力;生成对抗网络(GANs)
作者姓名:
张红颖;包雯静
作者机构:
中国民航大学天津市智能信号与图像处理重点实验室,天津 300300;中国民航大学电子信息与自动化学院,天津 300300
引用格式:
[1]张红颖;包雯静-.融合自注意力机制的生成对抗网络跨视角步态识别)[J].中国图象图形学报,2022(04):1097-1109
A类:
MVLP,GaitGAN
B类:
自注意力机制,生成对抗网络,跨视角,步态识别,生成式,识别率,生成器,判别器,现任,生成网络,编码器,解码器,步态特征,指示器,不同视角,对抗训练,像素级,判别网络,相一致,三元组损失,身份信息,依赖关系,成图,网络稳定,稳定训练,CASIA,Chinese,Academy,Sciences,Institute,Automation,gait,database,dataset,OU,ISIR,multi,view,large,population,自注意力模块,rank,generative,adversarial,network,步态数据,识别精度,不变特征,机器视觉,GANs
AB值:
0.346094
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。