首站-论文投稿智能助手
典型文献
硬件感知的高效特征融合网络搜索
文献摘要:
特征融合网络通过融合多尺度特征来提高目标检测精度,是深度学习目标检测框架中的关键部分.已有的研究工作通过优化融合网络的拓扑结构来提高结果精度,忽略了所需的硬件资源开销以及特征选择和特征融合操作对结果的影响.本文提出了支持多尺度特征融合的注意力感知融合网络(Attention-aware Fusion Network,AFN),通过软硬件协同可实现硬件开销(参数存储、计算时间等)敏感的神经网络自动搜索,从融合网络的特征、路径和操作三方面实现一体化的优化部署.实验结果表明,当主干网络为ResNet50时,在实现相似检测精度时,相比现有最先进的搜索网络NAS-FPN,本文方法的参数量和计算量分别减少29.6%和22.3%,相比现有人工设计网络FPN,本文方法的AP可以提高2.1%.当主干网络为VGG时,相比现有最先进的搜索网络Auto-FPN,本文方法的AP提高了 1.7%.
文献关键词:
目标检测;神经结构搜索;硬件开销
作者姓名:
郭家明;张蕊;支天;何得园;黄迪;常明;张曦珊;郭崎
作者机构:
中国科学院计算技术研究所处理器芯片全国重点实验室 北京 100190;寒武纪科技 北京 100191;中国科学院大学 北京 100049
文献出处:
引用格式:
[1]郭家明;张蕊;支天;何得园;黄迪;常明;张曦珊;郭崎-.硬件感知的高效特征融合网络搜索)[J].计算机学报,2022(11):2420-2432
A类:
B类:
特征融合网络,网络搜索,目标检测,检测精度,学习目标,检测框架,优化融合,拓扑结构,硬件资源,特征选择,融合操,多尺度特征融合,感知融合,Attention,aware,Fusion,Network,AFN,软硬件协同,硬件开销,计算时间,自动搜索,优化部署,主干网络,ResNet50,最先,搜索网,NAS,FPN,参数量,计算量,设计网,AP,VGG,Auto,神经结构搜索
AB值:
0.45272
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。