首站-论文投稿智能助手
典型文献
基于注意力-生成式对抗网络的异常行为检测
文献摘要:
为了满足对大规模视频数据的异常行为检测的需求,基于视频帧重建和帧预测的方法被广泛研究.但由于监控视角下背景环境是几乎不变的,因此会浪费大量的资源在不变的背景上,同时也不利于检测目标信息的提取.为了解决这个问题,本文使用无监督学习的视频帧预测策略,利用生成对抗网络学习正常行为的特征以生成效果较好的预测帧,并且拟采用注意力驱动损失来缓解异常行为检测中前景目标与背景环境失衡的问题,同时使用空间-通道注意力机制(CBAM)来增强模型生成器的预测效果.经在公共数据集UCSD Ped1和UCSD Ped2的测试和验证,在Ped1数据集上的检测精度达到了 83.5%,在Ped2数据集上的检测精度达到了 95.8%.与经典的异常行为检测算法以及原始基于生成式对抗网络异常检测算法比较,本文所采用的方法进一步提高了异常行为检测的准确率.
文献关键词:
异常行为检测;生成对抗网络;无监督学习;注意力驱动损失
作者姓名:
吴丽君;陈士东;陈志聪
作者机构:
福州大学物理信息工程学院,福建福州350108
引用格式:
[1]吴丽君;陈士东;陈志聪-.基于注意力-生成式对抗网络的异常行为检测)[J].微电子学与计算机,2022(08):31-38
A类:
视频帧预测,注意力驱动损失
B类:
生成式对抗网络,异常行为检测,视频数据,背景环境,目标信息,无监督学习,预测策略,生成对抗网络,网络学习,通道注意力机制,CBAM,增强模型,模型生成,生成器,公共数据,UCSD,Ped1,Ped2,检测精度,检测算法,始基,网络异常检测,算法比较
AB值:
0.247124
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。