首站-论文投稿智能助手
典型文献
SSP IMEX Runge-Kutta WENO Scheme for Generalized Rosenau-KdV-RLW Equation
文献摘要:
In this article,we present a third-order weighted essentially non-oscillatory(WENO)method for generalized Rosenau-KdV-RLW equation.The third order finite difference WENO reconstruction and central finite differences are applied to discrete advection terms and other terms,respectively,in spatial discretization.In order to achieve the third order accuracy both in space and time,four stage third-order L-stable SSP Implicit-Explicit Runge-Kutta method(Third-order SSP EXRK method and third-order DIRK method)is applied to temporal discretization.The high order accuracy and essentially non-oscillatory property of finite difference WENO reconstruction are shown for solitary wave and shock wave for Rosenau-KdV and Rosenau-KdV-RLW equations.The efficiency,reliability and excellent SSP property of the numerical scheme are demonstrated by several numerical experiments with large CFL number.
文献关键词:
作者姓名:
Muyassar Ahmat;Jianxian Qiu
作者机构:
School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing,Xiamen University,Xiamen 361005,China
引用格式:
[1]Muyassar Ahmat;Jianxian Qiu-.SSP IMEX Runge-Kutta WENO Scheme for Generalized Rosenau-KdV-RLW Equation)[J].数学研究(英文),2022(01):1-21
A类:
EXRK
B类:
SSP,IMEX,Runge,Kutta,WENO,Scheme,Generalized,Rosenau,KdV,RLW,Equation,In,this,article,present,third,order,weighted,essentially,oscillatory,method,generalized,finite,reconstruction,central,differences,are,applied,discrete,advection,terms,other,respectively,spatial,discretization,achieve,accuracy,both,space,four,stage,stable,Implicit,Explicit,Third,DIRK,temporal,high,property,shown,solitary,wave,shock,equations,efficiency,reliability,excellent,numerical,scheme,demonstrated,by,several,experiments,large,CFL,number
AB值:
0.499976
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。