典型文献
Superconvergence Analysis of the Runge-Kutta Discontinuous Galerkin Method with Upwind-Biased Numerical Flux for Two-Dimensional Linear Hyperbolic Equation
文献摘要:
In this paper,we shall establish the superconvergence properties of the Runge-Kutta dis-continuous Galerkin method for solving two-dimensional linear constant hyperbolic equa-tion,where the upwind-biased numerical flux is used.By suitably defining the correction function and deeply understanding the mechanisms when the spatial derivatives and the correction manipulations are carried out along the same or different directions,we obtain the superconvergence results on the node averages,the numerical fluxes,the cell averages,the solution and the spatial derivatives.The superconvergence properties in space are pre-served as the semi-discrete method,and time discretization solely produces an optimal order error in time.Some numerical experiments also are given.
文献关键词:
中图分类号:
作者姓名:
Yuan Xu;Qiang Zhang
作者机构:
Department of Mathematics,Nanjing University,Nanjing 210093,Jiangsu,China
文献出处:
引用格式:
[1]Yuan Xu;Qiang Zhang-.Superconvergence Analysis of the Runge-Kutta Discontinuous Galerkin Method with Upwind-Biased Numerical Flux for Two-Dimensional Linear Hyperbolic Equation)[J].应用数学与计算数学学报,2022(01):319-352
A类:
Superconvergence,Upwind
B类:
Analysis,Runge,Kutta,Discontinuous,Galerkin,Method,Biased,Numerical,Flux,Two,Dimensional,Linear,Hyperbolic,Equation,In,this,paper,we,shall,establish,superconvergence,properties,method,solving,two,dimensional,linear,constant,hyperbolic,equa,where,upwind,biased,numerical,used,By,suitably,defining,correction,function,deeply,understanding,mechanisms,when,spatial,derivatives,manipulations,are,carried,out,along,same,different,directions,obtain,results,node,averages,fluxes,cell,solution,space,pre,served,semi,discrete,discretization,solely,produces,optimal,order,error,Some,experiments,also,given
AB值:
0.651193
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。