典型文献
Quantum computational advantage via 60-qubit 24-cycle random circuit sampling
文献摘要:
To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1,which has 66 qubits in a two-dimensional array in a tunable coupler architecture.The readout fidelity of Zuchongzhi 2.1 is consid-erably improved to an average of 97.74%.The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling,with a system scale of up to 60 qubits and 24 cycles,and fidelity of FXEB =(3.66 ± 0.345) × 10-4.The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore[Nature 574,505 (2019)]in the classic simulation,and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0[arXiv:2106.14734 (2021)].The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years (about 4.8 × 104 years),while Zuchongzhi 2.1 only takes about 4.2 h,thereby significantly enhancing the quantum computational advantage.
文献关键词:
中图分类号:
作者姓名:
Qingling Zhu;Sirui Cao;Fusheng Chen;Ming-Cheng Chen;Xiawei Chen;Tung-Hsun Chung;Hui Deng;Yajie Du;Daojin Fan;Ming Gong;Cheng Guo;Chu Guo;Shaojun Guo;Lianchen Han;Linyin Hong;He-Liang Huang;Yong-Heng Huo;Liping Li;Na Li;Shaowei Li;Yuan Li;Futian Liang;Chun Lin;Jin Lin;Haoran Qian;Dan Qiao;Hao Rong;Hong Su;Lihua Sun;Liangyuan Wang;Shiyu Wang;Dachao Wu;Yulin Wu;YU XU;Kai Yan;Weifeng Yang;Yang Yang;Yangsen Ye;Jianghan Yin;Chong Ying;Jiale Yu;Chen Zha;Cha Zhang;Haibin Zhang;Kaili Zhang;Yiming Zhang;Han Zhao;Youwei Zhao;Liang Zhou;Chao-Yang Lu;Cheng-Zhi Peng;Xiaobo Zhu;Jian-Wei Pan
作者机构:
Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modem Physics,University of Science and Technology of China,Hefei 230026,China;Shanghai Branch,CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,Shanghai 201315,China;Shanghai Research Center for Quantum Sciences,Shanghai 201315,China;QuantumCTek Co.,Ltd.,Hefei 230026,China;Henan Key Laboratory of Quantum Information and Cryptography,Zhengzhou 450000,China;Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
文献出处:
引用格式:
[1]Qingling Zhu;Sirui Cao;Fusheng Chen;Ming-Cheng Chen;Xiawei Chen;Tung-Hsun Chung;Hui Deng;Yajie Du;Daojin Fan;Ming Gong;Cheng Guo;Chu Guo;Shaojun Guo;Lianchen Han;Linyin Hong;He-Liang Huang;Yong-Heng Huo;Liping Li;Na Li;Shaowei Li;Yuan Li;Futian Liang;Chun Lin;Jin Lin;Haoran Qian;Dan Qiao;Hao Rong;Hong Su;Lihua Sun;Liangyuan Wang;Shiyu Wang;Dachao Wu;Yulin Wu;YU XU;Kai Yan;Weifeng Yang;Yang Yang;Yangsen Ye;Jianghan Yin;Chong Ying;Jiale Yu;Chen Zha;Cha Zhang;Haibin Zhang;Kaili Zhang;Yiming Zhang;Han Zhao;Youwei Zhao;Liang Zhou;Chao-Yang Lu;Cheng-Zhi Peng;Xiaobo Zhu;Jian-Wei Pan-.Quantum computational advantage via 60-qubit 24-cycle random circuit sampling)[J].科学通报(英文版),2022(03):240-245
A类:
hardwares,Zuchongzhi,FXEB,supercomputer
B类:
Quantum,computational,advantage,via,random,circuit,sampling,To,ensure,long,term,quantum,should,be,upgraded,withstand,competition,continuously,improved,algorithms,Here,demonstrate,superconducting,computing,systems,which,has,qubits,two,dimensional,array,tunable,coupler,architecture,readout,fidelity,is,consid,erably,average,powerful,processor,enables,larger,scale,cycles,achieved,task,about,orders,magnitude,difficult,than,that,Sycamore,Nature,simulation,arXiv,consumption,classically,simulating,experiment,using,state,art,extended,tens,thousands,years,while,only,takes,thereby,significantly,enhancing
AB值:
0.509068
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。